JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech in CSE (DATA SCIENCE) III & IV YEAR COURSE STRUCTURE & TENTATIVE SYLLABUS (R18) # Applicable From 2020-21 Admitted Batch # **III YEAR I SEMESTER** | S. No. | Course
Code | Course Title | L | Т | Р | Credits | |--------|----------------|-----------------------------------|----|---|---|---------| | 1 | | Design and Analysis of Algorithms | 3 | 0 | 0 | 3 | | 2 | | Introduction to Data Science | 3 | 0 | 0 | 3 | | 3 | | Computer Networks | 3 | 0 | 0 | 3 | | 4 | | Data Mining | 3 | 0 | 0 | 3 | | 5 | | Professional Elective - I | 3 | 0 | 0 | 3 | | 6 | | Professional Elective - II | 3 | 0 | 0 | 3 | | 7 | | Data Mining Lab | 0 | 0 | 3 | 1.5 | | 8 | | Computer Networks Lab | 0 | 0 | 3 | 1.5 | | 9 | | Advanced Communication Skills Lab | 0 | 0 | 2 | 1 | | 10 | | Intellectual Property Rights | 3 | 0 | 0 | 0 | | | | Total Credits | 21 | 0 | 8 | 22 | # **III YEAR II SEMESTER** | S. No. | Course
Code | Course Title | L | Т | Р | Credits | |--------|----------------|---------------------------------|----|---|---|---------| | 1 | | Compiler Design | 3 | 1 | 0 | 4 | | 2 | | Machine Learning | 3 | 1 | 0 | 4 | | 3 | | Big Data Analytics | 3 | 1 | 0 | 4 | | 4 | | Professional Elective – III | 3 | 0 | 0 | 3 | | 5 | | Open Elective - I | 3 | 0 | 0 | 3 | | 6 | | Machine Learning Lab | 0 | 0 | 3 | 1.5 | | 7 | | Big Data Analytics Lab | 0 | 0 | 3 | 1.5 | | 8 | | Professional Elective - III Lab | 0 | 0 | 2 | 1 | | 9 | | Environmental Science | 3 | 0 | 0 | 0 | | | | Total Credits | 18 | 3 | 8 | 22 | # **IV YEAR I SEMESTER** | S. No. | Course
Code | Course Title | L | Т | Р | Credits | |--------|----------------|---|----|---|----|---------| | 1 | | Predictive Analytics | 3 | 0 | 0 | 3 | | 2 | | Web and Social Media Analytics | 2 | 0 | 0 | 2 | | 3 | | Professional Elective – IV | 3 | 0 | 0 | 3 | | 4 | | Professional Elective – V | 3 | 0 | 0 | 3 | | 5 | | Open Elective – II | 3 | 0 | 0 | 3 | | 6 | | Web and Social Media Analytics Lab | 0 | 0 | 2 | 1 | | 7 | | Industrial Oriented Mini Project/ Summer Internship | 0 | 0 | 0 | 2* | | 8 | | Seminar | 0 | 0 | 2 | 1 | | 9 | | Project Stage – I | 0 | 0 | 6 | 3 | | | | Total Credits | 14 | 0 | 10 | 21 | # **IV YEAR II SEMESTER** | S. No. | Course
Code | Course Title | L | Т | Р | Credits | |--------|----------------|---------------------------|---|---|----|---------| | 1 | | Organizational Behaviour | 3 | 0 | 0 | 3 | | 2 | | Professional Elective -VI | 3 | 0 | 0 | 3 | | 3 | | Open Elective-III | 3 | 0 | 0 | 3 | | 4 | | Project Stage - II | 0 | 0 | 14 | 7 | | | | Total Credits | 9 | 0 | 14 | 16 | *Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation. MC - Environmental Science - Should be Registered by Lateral Entry Students Only. MC - Satisfactory/Unsatisfactory # **Professional Elective-I** | Data Warehousing and Business Intelligence | |--| | Artificial Intelligence | | Web Programming | | Image Processing | | Computer Graphics | # **Professional Elective - II** |
=:00:170 II | |----------------------------------| | Spatial and Multimedia Databases | | Information Retrieval Systems | | Software Project Management | | DevOps | | Computer Vision and Robotics | #### Professional Elective - III | | Software Testing Methodologies | | | |--|-----------------------------------|--|--| | | Data Visualization Techniques | | | | | Scripting Languages | | | | | Mobile Application Development | | | | | Cryptography and Network Security | | | ^{*} Courses in PE – III and PE – III Lab must be in 1-1 correspondence. # Professional Elective -IV | Quantum Computing | |--------------------------------| | Database Security | | Natural Language Processing | | Information Storage Management | | Internet of Things | # **Professional Elective - V** | Privacy Preserving in Data Mining | |-----------------------------------| | Cloud Computing | | Data Science Applications | | Mining Massive Datasets | | Exploratory Data Analysis | # **Professional Elective - VI** | Data Stream Mining | |------------------------------------| | Web Security | | Video Analytics | | Blockchain Technology | | Parallel and Distributed Computing | PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V), Charkesay (M), Medchal Dirt. T.S.50008/ # **DESIGN AND ANALYSIS OF ALGORITHMS** B.Tech. III Year I Sem. L T P C 3 0 0 3 # Prerequisites: - 1. A course on "Computer Programming and Data Structures". - 2. A course on "Advanced Data Structures". # **Course Objectives:** - Introduces the notations for analysis of the performance of algorithms. - Introduces the data structure disjoint sets. - Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate; - Describes how to evaluate and compare different algorithms using worst-, average-, and best-case analysis. - Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete. # **Course Outcomes:** - Ability to analyze the performance of algorithms - Ability to choose appropriate data structures and algorithm design methods for a specified application - Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs #### UNIT - I **Introduction:** Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation. **Divide and conquer**: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication. # **UNIT - II** Disjoint Sets: Disjoint set operations, union and find algorithms **Backtracking**: General method, applications, n-queen's problem, sum of subsets problem, graph coloring #### **UNIT - III** **Dynamic Programming**: General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design. #### **UNIT - IV** **Greedy method:** General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem. #### **UNIT-V** **Branch and Bound**: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution. **NP-Hard and NP-Complete problems**: Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem. # **TEXT BOOK:** 1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press. # **REFERENCE BOOKS:** - 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education. - 2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education. - 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons. PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesor (M), Medichal Dirt. T.S.50008/ # INTRODUCTION TO DATA SCIENCE B.Tech. III Year I Sem. L T P C # **Course Objectives:** - 1. Learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration - 2. Understand the basic types of data and basic statistics - 3. Identify the importance of data reduction and data visualization techniques Course Outcomes: After completion of the course, the student should be able to - 1. Understand basic terms what Statistical Inference means. - 2. Identify probability distributions commonly used as foundations for statistical modelling. Fit a model to data - 3. describe the data using various statistical measures - 4. utilize R elements for data handling - 5. perform data reduction and apply visualization techniques. #### UNIT - I **Introduction:** Definition of Data Science- Big Data and Data Science hype – and getting past the hype – Datafication - Current landscape of perspectives - Statistical Inference - Populations and samples - Statistical modeling, probability distributions, fitting a model – Over fitting. **Basics of R:** Introduction, R-Environment Setup, Programming with R, Basic Data Types. # **UNIT - II** # **Data Types & Statistical Description** **Types of Data:** Attributes and Measurement, What is an Attribute? The Type of an Attribute, The Different Types of Attributes, Describing Attributes by the Number of Values, Asymmetric Attributes, Binary Attribute, Nominal Attributes, Ordinal Attributes, Numeric Attributes, Discrete versus Continuous Attributes. Basic Statistical Descriptions of Data: Measuring the Central Tendency: Mean, Median, and Mode, Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and Interquartile Range, Graphic Displays of Basic Statistical Descriptions of Data. #### **UNIT - III** **Vectors:** Creating and Naming Vectors, Vector Arithmetic, Vector sub setting, **Matrices:** Creating and Naming Matrices, Matrix Sub setting, Arrays, Class. **Factors and Data Frames:** Introduction to Factors: Factor Levels, Summarizing a Factor, Ordered Factors, Comparing Ordered Factors, Introduction to Data Frame, subsetting of Data Frames, Extending Data Frames, Sorting Data Frames. **Lists:** Introduction, creating a List: Creating a Named List, Accessing List Elements, Manipulating List Elements, Merging Lists, Converting Lists to Vectors # **UNIT - IV** **Conditionals and Control Flow:** Relational Operators, Relational Operators and
Vectors, Logical Operators, Logical Operators and Vectors, Conditional Statements. **Iterative Programming in R:** Introduction, While Loop, For Loop, Looping Over List. **Functions in R:** Introduction, writing a Function in R, Nested Functions, Function Scoping, Recursion, Loading an R Package, Mathematical Functions in R. #### **UNIT-V** **Data Reduction:** Overview of Data Reduction Strategies, Wavelet Transforms, Principal Components Analysis, Attribute Subset Selection, Regression and Log-Linear Models: Parametric Data Reduction, Histograms, Clustering, Sampling, Data Cube Aggregation: Data Visualization: Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualizing Complex Data and Relations. # **TEXT BOOKS:** - 1. Doing Data Science, Straight Talk from The Frontline. Cathy O'Neil and Rachel Schutt, O'Reilly, 2014 - 2. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, 3rd ed. The Morgan Kaufmann Series in Data Management Systems. - 3. K G Srinivas, G M Siddesh, "Statistical programming in R", Oxford Publications. - 1. Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education. - 2. Brain S. Everitt, "A Handbook of Statistical Analysis Using R", Second Edition, 4 LLC, 2014. - 3. Dalgaard, Peter, "Introductory statistics with R", Springer Science & Business Media, 2008. - 4. Paul Teetor, "R Cookbook", O'Reilly, 2011. # **COMPUTER NETWORKS** B.Tech. III Year I Sem. L T P C 3 0 0 3 # **Prerequisites:** - A course on "Programming for problem solving". - A course on "Data Structures". # **Course Objectives:** - 1. The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks. - 2. Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers. # **Course Outcomes:** - 1. Gain the knowledge of the basic computer network technology. - 2. Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model. - 3. Obtain the skills of subnetting and routing mechanisms. - 4. Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation. # UNIT - I Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet. Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless transmission. # **UNIT - II** Data link layer: Design issues, framing, Error detection and correction. Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel. Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols. Medium Access sub layer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching. #### **UNIT - III** Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet. # **UNIT - IV** Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols. #### **UNIT - V** Application Layer –Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video. # **TEXT BOOK:** 1. Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI - 1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education - 2. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH. # **DATA MINING** # B.Tech. III Year I Sem. L T P C 3 0 0 3 # **Pre-Requisites:** - A course on "Database Management Systems" - Knowledge of probability and statistics # **Course Objectives:** - It presents methods for mining frequent patterns, associations, and correlations. - It then describes methods for data classification and prediction, and data-clustering approaches. - It covers mining various types of data stores such as spatial, textual, multimedia, streams. # **Course Outcomes:** - Ability to understand the types of the data to be mined and present a general classification of tasks and primitives to integrate a data mining system. - Apply preprocessing methods for any given raw data. - Extract interesting patterns from large amounts of data. - Discover the role played by data mining in various fields. - Choose and employ suitable data mining algorithms to build analytical applications - Evaluate the accuracy of supervised and unsupervised models and algorithms. #### UNIT - I **Data Mining:** Data—Types of Data—, Data Mining Functionalities— Interestingness Patterns—Classification of Data Mining systems—Data mining Task primitives—Integration of Data mining system with a Data warehouse—Major issues in Data Mining—Data Preprocessing. # UNIT - II **Association Rule Mining:** Mining Frequent Patterns–Associations and correlations – Mining Methods– Mining Various kinds of Association Rules– Correlation Analysis– Constraint based Association mining. Graph Pattern Mining, SPM. # UNIT - III **Classification:** Classification and Prediction – Basic concepts–Decision tree induction–Bayesian classification, Rule–based classification, Lazy learner. # **UNIT - IV** **Clustering and Applications:** Cluster analysis—Types of Data in Cluster Analysis—Categorization of Major Clustering Methods— Partitioning Methods, Hierarchical Methods— Density—Based Methods, Grid—Based Methods, Outlier Analysis. # UNIT - V **Advanced Concepts:** Basic concepts in Mining data streams–Mining Time–series data—Mining sequence patterns in Transactional databases– Mining Object– Spatial– Multimedia–Text and Web data – Spatial Data mining– Multimedia Data mining–Text Mining– Mining the World Wide Web. # **TEXT BOOKS:** - 1. Data Mining Concepts and Techniques Jiawei Han & Micheline Kamber, 3rd Edition Elsevier. - 2. Data Mining Introductory and Advanced topics Margaret H Dunham, PEA. #### **REFERENCE BOOK:** 1. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second Edition), Morgan Kaufmann, 2005. PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V), Charlesay (M), Medchal Dirt. T S-50008/ years # DATA WAREHOUSING AND BUSINESS INTELLIGENCE (Professional Elective - I) B.Tech. III Year I Sem. LTPC 0 0 3 # **Course Objectives:** 1. This course is concerned with extracting data from the information systems that deal with the day-to-day operations and transforming it into data that can be used by businesses to drive high-level decision making 2. Students will learn how to design and create a data warehouse, and how to utilize the process of extracting, transforming, and loading (ETL) data into data warehouses. #### **Course Outcomes:** - 1. Understand architecture of data warehouse and OLAP operations. - 2. Understand Fundamental concepts of BI and Analytics - 3. Application of BI Key Performance indicators - 4. Design of Dashboards, Implementation of Web Analytics5. Understand Utilization of Advanced BI Tools and their Implementation. - 6. Implementation of BI Techniques and BI Ethics. #### UNIT - I DATA WAREHOUSE: Data Warehouse-Data Warehouse Architecture- Multidimensional Data Model-Data cube and OLAP Technology-Data Warehouse Implementation -DBMS schemas for Decision support - Efficient methods for Data cube computation. #### **UNIT - II** Business Intelligence: Introduction – Definition, Leveraging Data and Knowledge for BI, BI Components, BI Dimensions, Information Hierarchy, Business Intelligence and Business Analytics, BI Life Cycle. Data for BI - Data Issues and Data Quality for BI. # **UNIT - III** BI Implementation - Key Drivers, Key Performance Indicators and Performance Metrics, BI Architecture/Framework, Best Practices, Business Decision Making, Styles of BI-vent-Driven alerts - A cyclic process of Intelligence Creation. The value of Business Intelligence-Value driven & Information use. # **UNIT - IV** Advanced BI - Big Data and BI, Social Networks, Mobile BI, emerging trends, Description of different BI-Tools (Pentaho, KNIME) # UNIT - V Business intelligence implementation-Business Intelligence and integration implementation-connecting in BI systems- Issues of legality- Privacy and ethics- Social networking and BI. # **TEXT BOOKS:** - 1. Data Mining Concepts and Techniques JIAWEI HAN & MICHELINE KAMBER, Elsevier. - 2. Rajiv Sabherwal "Business Intelligence" Wiley Publications, 2012. - 1. Efraim Turban, Ramesh Sharda, Jay Aronson, David King, Decision Support and Business Intelligence Systems, 9th Edition, Pearson Education, 2009. - 2. David Loshin, Business Intelligence The Savy Manager's Guide Getting Onboard with Emerging IT, Morgan Kaufmann Publishers, 2009. - 3. Philo Janus, Stacia Misner, Building Integrated Business Intelligence Solutions with SQL Server, 2008 R2 & Office 2010, TMH, 2011. - 4. Business Intelligence Data Mining and Optimization for decision making [Author: Carlo-Verellis] [Publication: (Wiley)]. - 5. Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007. - Building the Data Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd. - 7. Data Mining Introductory and Advanced topics –MARGARET H DUNHAM, PEA. # ARTIFICIAL INTELLIGENCE (Professional Elective – I) B.Tech. III Year I Sem. L T P C 3 0 0 3 # **Prerequisites:** - 1. A course on "Computer Programming and Data Structures" - 2. A course on
"Advanced Data Structures" - 3. A course on "Design and Analysis of Algorithms" - 4. A course on "Mathematical Foundations of Computer Science" - 5. Some background in linear algebra, data structures and algorithms, and probability will all be helpful # **Course Objectives:** - To learn the distinction between optimal reasoning Vs. human like reasoning - To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities. - To learn different knowledge representation techniques. - To understand the applications of Al, namely game playing, theorem proving, and machine learning. # **Course Outcomes:** - Ability to formulate an efficient problem space for a problem expressed in natural language. - Select a search algorithm for a problem and estimate its time and space complexities. - Possess the skill for representing knowledge using the appropriate technique for a given problem. - Possess the ability to apply AI techniques to solve problems of game playing, and machine learning. #### UNIT - I Problem Solving by Search-I: Introduction to AI, Intelligent Agents **Problem Solving by Search –II:** Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching wih Partial Observations, Online Search Agents and Unknown Environment. # **UNIT - II** # **Problem Solving by Search-II and Propositional Logic** **Adversarial Search:** Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions. **Constraint Satisfaction Problems:** Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems. **Propositional Logic:** Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic. # **UNIT - III** # Logic and Knowledge Representation **First-Order Logic:** Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic. PRINCETON INSTITUTE OF ENGINEERING 8 TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesor (M), Medichal Dirt. T.S.50008/ **Inference in First-Order Logic:** Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution. **Knowledge Representation:** Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information. # **UNIT - IV** # **Planning** **Classical Planning:** Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches. **Planning and Acting in the Real World:** Time, Schedules, and Resources, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multi agent Planning. # **UNIT - V** # Uncertain knowledge and Learning **Uncertainty:** Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use, **Probabilistic Reasoning:** Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory. **Learning:** Forms of Learning, Supervised Learning, Learning Decision Trees. Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming. #### **TEXT BOOK:** 1. Artificial Intelligence A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education. - 1. Artificial Intelligence, 3rd Edn, E. Rich and K. Knight (TMH) - 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education. - 3. Artificial Intelligence, Shivani Goel, Pearson Education. - 4. Artificial Intelligence and Expert systems Patterson, Pearson Education. # WEB PROGRAMMING (Professional Elective – I) B.Tech. III Year I Sem. L T P C 3 0 0 3 Course Objectives: The student should be able to: - Understand the technologies used in Web Programming. - Know the importance of object-oriented aspects of Scripting. - Understand creating database connectivity using JDBC. - Learn the concepts of web-based application using sockets. **Course Outcomes:** Upon Completion of the course, the students will be able to - · Design web pages. - Use technologies of Web Programming. - Apply object-oriented aspects to Scripting. - Create databases with connectivity using JDBC. - Build web-based application using sockets. #### UNIT - I **SCRIPTING**: Web page Designing using HTML, Scripting basics- Client side and server-side scripting. Java Script-Object, names, literals, operators and expressions- statements and features- events - windows -documents - frames - data types - built-in functions- Browser object model - Verifying forms - HTML5-CSS3- HTML 5 canvas - Web site creation using tools. #### UNIT - II **JAVA:** Introduction to object-oriented programming-Features of Java – Data types, variables and arrays – Operators – Control statements – Classes and Methods – Inheritance. Packages and Interfaces – Exception Handling – Multithreaded Programming – Input/ Output – Files – Utility Classes – String Handling. # UNIT - III **JDBC:** JDBC Overview – JDBC implementation – Connection class – Statements - Catching Database Results, handling database Queries. Networking– Inet Address class – URL class- TCP sockets – UDP sockets, Java Beans –RMI. # **UNIT - IV** **APPLETS:** Java applets- Life cycle of an applet – Adding images to an applet – Adding sound to an applet. Passing parameters to an applet. Event Handling. Introducing AWT: Working with Windows Graphics and Text. Using AWT Controls, Layout Managers and Menus. Servlet – life cycle of a servlet. The Servlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction to JSP. # UNIT - V **XML AND WEB SERVICES:** Xml – Introduction-Form Navigation-XML Documents- XSL – XSLT- Web services-UDDI-WSDL-Java web services – Web resources. # **TEXT BOOKS:** - Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How To Program 5th Edition. - 2. Herbert Schildt, Java The Complete Reference, 7th Edition. Tata McGraw- Hill Edition. - 3. Michael Morrison XML Unleashed Tech media SAMS. - 1. John Pollock, Java script A Beginners Guide, 3rd Edition -- Tata McGraw-Hill Edition. - 2. Keyur Shah, Gateway to Java Programmer Sun Certification, Tata McGraw Hill, 2002. # IMAGE PROCESSING (Professional Elective – I) B.Tech. III Year I Sem. L T P C 3 0 0 3 # **Pre-requisites:** - 1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of Digital Signal Processing is desirable. - 2. A course on "Computational Mathematics" - 3. A course on "Computer Oriented Statistical Methods" # **Course Objectives:** - 1. Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts. - 2. The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression. # **Course Outcomes:** - 1. Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization. - 2. Demonstrate the knowledge of filtering techniques. - 3. Demonstrate the knowledge of 2D transformation techniques. - 4. Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques. #### UNIT - I **Digital Image Fundamentals:** Digital Image through Scanner, Digital Camera. Concept of Gray Levels. Gray Level to Binary Image Conversion. Sampling and Quantization. Relationship between Pixels. Imaging Geometry. 2D Transformations-DFT, DCT, KLT and SVD. # **UNIT - II** Image Enhancement in Spatial Domain Point Processing, Histogram Processing, Spatial Filtering, Enhancement in Frequency Domain, Image Smoothing, Image Sharpening. #### **UNIT - III** Image Restoration Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration. # **UNIT - IV** Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation. #### **UNIT - V** Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression. #### **TEXT BOOK:** 1. Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/ Pearson Education, 2nd Ed, 2004. - 1. Fundamentals of Digital Image Processing: A. K. Jain, PHI. - 2. Digital Image Processing using MAT LAB: Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins: Pearson Education India, 2004. - 3. Digital Image Processing: William K. Pratt, John Wilely, 3rd Edition, 2004. # **COMPUTER GRAPHICS (Professional Elective – I)** #### B.Tech. III Year I Sem. L T P C 3 0 0 3 # Prerequisites: - 1. Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication. - 2. A course on "Computer
Programming and Data Structures" # **Course Objectives:** - The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics. - Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection; # **Course Outcomes:** - Acquire familiarity with the relevant mathematics of computer graphics. - Be able to design basic graphics application programs, including animation - Be able to design applications that display graphic images to given specifications #### UNIT - I **Introduction:** Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices. **Output primitives**: Points and lines, line drawing algorithms (Bresenham's and DDA Algorithm), mid-point circle and ellipse algorithms. **Polygon Filling**: Scan-line algorithm, boundary-fill and flood-fill algorithms # **UNIT - II** **2-D geometrical transforms**: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems. **2-D viewing**: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland algorithms, Sutherland – Hodgeman polygon clipping algorithm. #### **UNIT - III** **3-D object representation**: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods. # **UNIT - IV** **3-D Geometric transformations**: Translation, rotation, scaling, reflection and shear transformations, composite transformations. **3-D viewing**: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping. #### **UNIT - V** **Computer animation**: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications. **Visible surface detection methods**: Classification, back-face detection, depth-buffer, BSP-tree methods and area sub-division methods. # **TEXT BOOKS:** - 1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education - 2. "Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education. - 3. Computer Graphics, Steven Harrington, TMH - 1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition. - 2. Principles of Interactive Computer Graphics", Neuman and Sproul, TMH. - 3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer. # **SPATIAL AND MULTIMEDIA DATABASES (Professional Elective – II)** B.Tech. III Year I Sem. L T P C 3 0 0 3 **Course Objective:** Introduce the basic concepts, data models and indexing structures for spatial data, multimedia data. #### **Course Outcomes:** - 1. Understand data models, storage, indexing and design of spatial databases. - 2. Represent image database with R-tree. - 3. Store and retrieve multimedia data. #### UNIT - I Introduction to Spatial Databases: Overview, beneficiaries, GIA and SDBMS, users, Space taxonomy, query language, query processing, query optimization. Spatial Concepts and Data Models: Models of Spatial information, three step database design, Extending the ER model with spatial concept, object-oriented data modeling. Spatial Query Languages. #### **UNIT - II** Spatial Storage and Indexing: Storage-disks and files, spatial indexing, TR*, spatial join index. Query processing and optimization – Evaluation of Spatial operations, query optimization, Analysis of Spatial index structures, distributed and parallel spatial database system. Multidimensional Data Structures: k-d Trees, Point Quadtrees, The MX-Quadtree, R-Trees, comparison of Different Data Structures. #### **UNIT - III** Image Databases: Raw Images, Compressed Image Representations, Image Processing: Segmentation, Similarity-Based Retrieval, Alternative Image DB Paradigms, Representing Image DBs with Relations, Representing Image DBs with R-Trees, Retrieving Images By Spatial Layout, Implementations. Text/Document Databases: Precision and Recall, Stop Lists, Word Stems, and Frequency Tables, Latent Semantic Indexing, TV-Trees, Other Retrieval Techniques. #### **UNIT - IV** Video Databases: Organizing Content of a Single Video, Querying Content of Video Libraries, Video Segmentation, video Standards Audio Databases: A General Model of Audio Data, Capturing Audio Content through Discrete Transformation, Indexing Audio Data Multimedia Databases: Design and Architecture of a Multimedia Database, Organizing Multimedia Data Based on The Principle of Uniformity, Media Abstractions, Query Languages for Retrieving Multimedia Data, Indexing SMDSs with Enhanced Inverted Indices, Query Relaxation/Expansion. # **UNIT - V** Creating Distributed Multimedia Presentations: Objects in Multimedia Presentations, Specifying Multimedia Documents with Temporal Constraints, Efficient Solution of Temporal Presentation Constraints, Spatial Constraints. Distributed Media Servers: Distributed multimedia server architecture, distributed retrieval plans, optimal distributed retrieval plans. #### **TEXT BOOKS:** - 1. Shashi Shekhar, Sanjiv Chawla, Spatial Databases-A Tour, Pearson Education. - 2. V.S. Subrahmanian, Principles of Multimedia Database Systems, Morgan Kauffman. - 1. Multimedia Databases: An object relational approach, Lynne Dunckley, Pearson Education. - 2. Multimedia Database Systems, Prabhakaran, Springer. # INFORMATION RETRIEVAL SYSTEMS (Professional Elective - II) B.Tech. III Year I Sem. L T P C 3 0 0 3 Prerequisites: Data Structures. # **Course Objectives:** - 1. To learn the important concepts and algorithms in IRS - 2. To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems. # **Course Outcomes:** - 1. Ability to apply IR principles to locate relevant information large collections of data - 2. Ability to design different document clustering algorithms - 3. Implement retrieval systems for web search tasks. - 4. Design an Information Retrieval System for web search tasks. # UNIT - I Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities # **UNIT - II** Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models # **UNIT - III** Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages. Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters #### **UNIT - IV** User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies # **UNIT - V** Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval #### **TEXT BOOK:** Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer. - 1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992. - 2. Information Storage & Retrieval By Robert Korfhage John Wiley & Sons. - 3. Modern Information Retrieval By Yates and Neto Pearson Education. # **SOFTWARE PROJECT MANAGEMENT (Professional Elective – II)** B.Tech. III Year I Sem. L T P C 3 0 0 3 Prerequisites: A course on "Software Engineering". # **Course Objectives** - 1. To develop skills in software project management - 2. The topics include-software economics; software development life cycle; artifacts of the process; workflows; checkpoints; project organization and responsibilities; project control and process instrumentation. # **Course Outcomes** - 1. Gain knowledge of software economics, phases in the life cycle of software development, project organization, project control and process instrumentation. - 2. Analyze the major and minor milestones, artifacts and metrics from management and technical perspective. - 3. Design and develop software product using conventional and modern principles of software project management #### UNIT - I **Conventional Software Management:** The waterfall model, conventional software Management performance. **Evolution of Software Economics:** Software economics, pragmatic software cost estimation. # **UNIT - II** **Improving Software Economics:** Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections. **The old way and the new:** The principles of conventional software Engineering, principles of modern software management, transitioning to an
iterative process. #### **UNIT - III** **Life cycle phases:** Engineering and production stages, inception, Elaboration, construction, transition phases. **Artifacts of the process:** The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts. **Model based software architectures:** A Management perspective and technical perspective. **Work Flows of the process:** Software process workflows, Iteration workflows. # **UNIT - IV** **Checkpoints of the process:** Major milestones, Minor Milestones, Periodic status assessments. Iterative Process Planning: work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning. **Project Organizations and Responsibilities:** Line-of-Business Organizations, Project Organizations, evolution of Organizations. Process Automation: Automation building blocks, The Project Environment. # UNIT - V **Project Control and Process instrumentation:** The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation. Tailoring the Process: Process discriminates. **Future Software Project Management:** modern Project Profiles, Next generation Software economics, modern process transitions. **Case Study:** The command Center Processing and Display system- Replacement (CCPDS-R). #### **TEXT BOOK:** 1. Software Project Management, Walker Royce: Pearson Education, 2005. - 1. Software Project Management, Bob Hughes and Mike Cotterell: Tata McGraw-Hill Edition. - 2. Software Project Management, Joel Henry, Pearson Education. - 3. Software Project Management in practice, Pankaj Jalote, Pearson Education. 2005. # **DEVOPS (Professional Elective – II)** B.Tech. III Year I Sem. L T P C 3 0 0 3 Course Objectives: The main objectives of this course are to - 1. Describe the agile relationship between development and IT operations. - 2. Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability - 3. Implement automated system update and DevOps lifecycle Course Outcomes: On successful completion of this course, students will be able to: - 1. Identify components of Devops environment - 2. Describe Software development models and architectures of DevOps - 3. Apply different project management, integration, testing and code deployment tool - 4. Investigate different DevOps Software development models - 5. Assess various Devops practices - 6. Collaborate and adopt Devops in real-time projects # UNIT - I **Introduction:** Introduction, Agile development model, DevOps, and ITIL. DevOps process and Continuous Delivery, Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples # **UNIT - II** **Software development models and DevOps:** DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing. **DevOps influence on Architecture:** Introducing software architecture, The monolithic scenario, Architecture rules of thumb, The separation of concerns, Handling database migrations, Microservices, and the data tier, DevOps, architecture, and resilience. # **UNIT - III** **Introduction to project management:** The need for source code control, The history of source code management, Roles and code, source code management system and migrations, Shared authentication, Hosted Git servers, Different Git server implementations, Docker intermission, Gerrit, The pull request model, GitLab. # **UNIT - IV** **Integrating the system:** Build systems, Jenkins build server, Managing build dependencies, Jenkins plugins, and file system layout, The host server, Build slaves, Software on the host, Triggers, Job chaining and build pipelines, Build servers and infrastructure as code, Building by dependency order, Build phases, Alternative build servers, Collating quality measures. # **UNIT - V** **Testing Tools and automation:** Various types of testing, Automation of testing Pros and cons, Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration points, Test-driven development, REPL-driven development **Deployment of the system:** Deployment systems, Virtualization stacks, code execution at the client, Puppet master and agents, Ansible, Deployment tools: Chef, Salt Stack and Docker # **TEXT BOOKS:** - Joakim Verona. Practical Devops, Second Edition. Ingram short title; 2nd edition (2018). ISBN-10: 1788392574 - 2. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications. ISBN: 9788126579952 # **REFERENCE BOOK:** Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10. Principal PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesor (M), Medchal Div. T S-50008/ # **COMPUTER VISION AND ROBOTICS (Professional Elective – II)** B.Tech. III Year I Sem. L T P C 3 0 0 3 Pre-Requisites: UG level Course in Linear Algebra and Probability. # **Course Objectives:** - 1. To understand the Fundamental Concepts Related To sources, shadows and shading. - 2. To understand the The Geometry of Multiple Views. # **Course Outcomes:** - 1. Implement fundamental image processing techniques required for computer vision. - 2. Implement boundary tracking techniques. - 3. Apply chain codes and other region descriptors, Hough Transform for line, circle, and ellipse detections. - 4. Apply 3D vision techniques and Implement motion related techniques. - 5. Develop applications using computer vision techniques. #### UNIT - I **CAMERAS:** Pinhole Cameras. Radiometry – Measuring Light: Light in Space, Light Surfaces, Important Special Cases. **Sources, Shadows, And Shading:** Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models. **Color:** The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color. # **UNIT - II** **Linear Filters:** Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates. Edge Detection: Noise, Estimating Derivatives, Detecting Edges. **Texture:** Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture. #### **UNIT - III** The Geometry of Multiple Views: Two Views. Stereopsis: Reconstruction, Human Stereposis, Binocular Fusion, Using More Cameras. **Segmentation by Clustering:** What Is Segmentation? Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering, #### **UNIT - IV** **Segmentation by Fitting a Model:** The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness **Segmentation and Fitting Using Probabilistic Methods:** Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice. **Tracking With Linear Dynamic Models:** Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples #### **UNIT - V** **Geometric Camera Models:** Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations. Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot Localization. **Model-Based Vision:** Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment. #### **TEXT BOOKS:** 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. - 1. E. R. Davies: Computer and Machine Vision Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013. - 2. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008. - 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011. # **DATA MINING LAB** B.Tech. III Year I Sem. L T P C 0 0 3 1.5 Prerequisites: A course on "Database Management System". # **Course Objectives:** - 1. The course is intended to obtain hands-on experience using data mining software. - 2. Intended to provide practical exposure of the concepts in data mining algorithms. #### **Course Outcomes:** - 3. Apply preprocessing statistical methods for any given raw data. - 4. Gain practical experience of constructing a data warehouse. - 5. Implement various algorithms for data mining in order to discover interesting patterns from large amounts of data. - 6. Apply OLAP operations on data cube construction. # LIST OF EXPERIMENTS: Experiments using Weka & Pentaho Tools - 1. Data Processing Techniques: - (i) Data cleaning (ii) Data transformation Normalization (iii) Data integration - 2. Partitioning Horizontal, Vertical, Round Robin, Hash based - 3. Data Warehouse schemas star, snowflake, fact constellation - 4. Data cube construction OLAP operations - 5. Data Extraction, Transformations & Loading operations - 6. Implementation of Attribute oriented induction algorithm - 7. Implementation of apriori algorithm - 8. Implementation of FP Growth algorithm - 9. Implementation of Decision Tree Induction - 10. Calculating Information gain measures - 11. Classification of data using Bayesian approach - 12. Classification of data using K nearest neighbour approach - 13. Implementation of K means algorithm - 14. Implementation of BIRCH algorithm - 15. Implementation of PAM algorithm - 16. Implementation of DBSCAN algorithm # **TEXT
BOOKS:** - 1. Data Mining Concepts and Techniques JIAWEI HAN &MICHELINE KAMBER, Elsevier. - 2. Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007. # **REFERENCE BOOK:** 1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Anuj Karpatne, Introduction to Data Mining, Pearson Education. # **COMPUTER NETWORKS LAB** B.Tech. III Year I Sem. L T P C 0 0 3 1.5 # **Course Objectives:** - 1. To understand the working principle of various communication protocols. - 2. To understand the network simulator environment and visualize a network topology and observe its performance - 3. To analyze the traffic flow and the contents of protocol frames # **Course Outcomes:** - 1. Implement data link layer farming methods - 2. Analyze error detection and error correction codes. - 3. Implement and analyze routing and congestion issues in network design. - 4. Implement Encoding and Decoding techniques used in presentation layer - 5. To be able to work with different network tools # **List of Experiments** - 1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing. - 2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP - 3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism. - 4. Implement Dijsktra's algorithm to compute the shortest path through a network - 5. Take an example subnet of hosts and obtain a broadcast tree for the subnet. - 6. Implement distance vector routing algorithm for obtaining routing tables at each node. - 7. Implement data encryption and data decryption - 8. Write a program for congestion control using Leaky bucket algorithm. - 9. Write a program for frame sorting techniques used in buffers. - 10. Wireshark - i. Packet Capture Using Wire shark - ii. Starting Wire shark - iii. Viewing Captured Traffic - iv. Analysis and Statistics & Filters. - 11. How to run Nmap scan - 12. Operating System Detection using Nmap - 13. Do the following using NS2 Simulator - i. NS2 Simulator-Introduction - ii. Simulate to Find the Number of Packets Dropped - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP - iv. Simulate to Find the Number of Packets Dropped due to Congestion - v. Simulate to Compare Data Rate& Throughput. - vi. Simulate to Plot Congestion for Different Source/Destination - vii. Simulate to Determine the Performance with respect to Transmission of Packets #### **TEXT BOOK:** 1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI. - 1. An Engineering Approach to Computer Networks, S. Keshav, 2nd Edition, Pearson Education - 2. Data Communications and Networking Behrouz A. Forouzan. 3rd Edition, TMH. # ADVANCED COMMUNICATION SKILLS LAB B.Tech. III Year I Sem. L T P C 0 0 2 1 #### 1. INTRODUCTION: The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context. The proposed course should be a laboratory course to enable students to use 'good' English and perform the following: - Gathering ideas and information to organize ideas relevantly and coherently. - Engaging in debates. - Participating in group discussions. - Facing interviews. - Writing project/research reports/technical reports. - Making oral presentations. - Writing formal letters. - Transferring information from non-verbal to verbal texts and vice-versa. - Taking part in social and professional communication. #### 2. OBJECTIVES: This Lab focuses on using multi-media instruction for language development to meet the following targets: - To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts. - Further, they would be required to communicate their ideas relevantly and coherently in writing. - To prepare all the students for their placements. # 3. SYLLABUS: The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab: - 1. Activities on Fundamentals of Inter-personal Communication and Building Vocabulary Starting a conversation responding appropriately and relevantly using the right body language Role Play in different situations & Discourse Skills- using visuals Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary. - Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effective googling. - 3. **Activities on Writing Skills** Structure and presentation of different types of writing *letter writing/Resume writing/ e-correspondence/Technical report writing/* planning for writing improving one's writing. - Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc. - 5. Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews. Principal PRINCETON INSTITUTE OF ENGINEERING 8 TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesor (M), Medchal Diri. T S-50008/ # 4. MINIMUM REQUIREMENT: The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab: - Spacious room with appropriate acoustics. - Round Tables with movable chairs - Audio-visual aids - LCD Projector - Public Address system - P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed 2.8 GHZ - T. V, a digital stereo & Camcorder - Headphones of High quality # 5. SUGGESTED SOFTWARE: The software consisting of the prescribed topics elaborated above should be procured and used. - Oxford Advanced Learner's Compass, 7th Edition - DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice. - Lingua TOEFL CBT Insider, by Dream tech - TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS) #### **TEXT BOOKS:** - Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd. 2nd Edition - 2. Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5th Edition. - 1. Learn Correct English A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007 - 2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016. - 3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009. - 4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi. - 5. English Vocabulary in Use series, Cambridge University Press 2008. - 6. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning. - 7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009. - 8. Job Hunting by Colm Downes, Cambridge University Press 2008. - 9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009. # **INTELLECTUAL PROPERTY RIGHTS** # B.Tech. III Year I Sem. L T P C 3 0 0 0 #### UNIT - I Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights. #### UNIT - II Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes. #### UNIT - III Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law. Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer #### **UNIT - IV** Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation. Unfair competition: Misappropriation right of publicity, false advertising. # UNIT - V New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits. International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law. #### **TEXT & REFERENCE BOOKS:** - 1. Intellectual property right, Deborah, E. Bouchoux, Cengage learning. - 2. Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd. # **COMPILER DESIGN** #### B.Tech. III Year II Sem. L T P C 3 1 0 4 # Prerequisites: - 1. A course on "Formal Languages and Automata Theory". - 2. A course on "Computer Organization and architecture". - 3. A course on "Computer Programming and Data Structures". # **Course Objectives:** - Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills
necessary for constructing a compiler. - Topics include phases of compiler, parsing, syntax directd translation, type checking use of symbol tables, code optimization techniques, intermediate code generation, code generation and data flow analysis. # **Course Outcomes:** - Demonstrate the ability to design a compiler given a set of language features. - Demonstrate the the knowledge of patterns, tokens & regular expressions for lexical analysis. - Acquire skills in using lex tool & yacc tool for devleoping a scanner and parser. - Design and implement LL and LR parsers - Design algorithms to do code optimization in order to improve the performance of a program in terms of space and time complexity. - Design algorithms to generate machine code. #### UNIT - I **Introduction:** The structure of a compiler, the science of building a compiler, programming language basics. **Lexical Analysis:** The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical-Analyzer Generator Lex, Finite Automata, From Regular Expressions to Automata, Design of a Lexical-Analyzer Generator, Optimization of DFA-Based Pattern Matchers. # UNIT - II **Syntax Analysis:** Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing, Bottom-Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR Parsers, Using Ambiguous Grammars and Parser Generators. # **UNIT - III** **Syntax-Directed Translation:** Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax-Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's. **Intermediate-Code Generation:** Variants of Syntax Trees, Three-Address Code, Types and Declarations, Type Checking, Control Flow, Switch-Statements, Intermediate Code for Procedures. # **UNIT - IV** **Run-Time Environments:** Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management, Introduction to Garbage Collection, Introduction to Trace-Based Collection. **Code Generation:** Issues in the Design of a Code Generator, The Target Language, Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A Simple Code Generator, Peephole Optimization, Register Allocation and Assignment, Dynamic Programming Code-Generation. #### UNIT - V **Machine-Independent Optimization:** The Principal Sources of Optimization, Introduction to Data-Flow Analysis, Foundations of Data-Flow Analysis, Constant Propagation, Partial-Redundancy Elimination, Loops in Flow Graphs. #### **TEXT BOOK:** 1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman. - 1. Lex & Yacc John R. Levine, Tony Mason, Doug Brown, O'reilly - 2. Compiler Construction, Louden, Thomson. #### **MACHINE LEARNING** # B.Tech. III Year II Sem. L T P C 3 1 0 4 # **Prerequisites** - 1. Data Structures. - 2. Knowledge on statistical methods. # **Course Objectives** - This course explains machine learning techniques such as decision tree learning, Bayesian learning etc. - To understand computational learning theory. - To study the pattern comparison techniques. # **Course Outcomes** - Understand the concepts of computational intelligence like machine learning. - Ability to get the skill to apply machine learning techniques to address the real time problems in different areas. - Understand the Neural Networks and its usage in machine learning application. # UNIT - I Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning. Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias. **Decision Tree Learning** – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning. # **UNIT - II** **Artificial Neural Networks-1**– Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm. **Artificial Neural Networks-2-** Remarks on the Back-Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks. **Evaluation Hypotheses** – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms. # **UNIT - III** **Bayesian learning** – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm. **Computational learning theory** – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning. **Instance-Based Learning-** Introduction, *k*-nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning. # UNIT- IV **Genetic Algorithms** – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms. **Learning Sets of Rules** – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution. **Reinforcement Learning** – Introduction, the learning task, *Q*–learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming. # UNIT - V **Analytical Learning-1**- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge. **Analytical Learning-2-**Using prior knowledge to alter the search objective, using prior knowledge to augment search operators. **Combining Inductive and Analytical Learning** – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis. #### **TEXT BOOK:** 1. Machine Learning - Tom M. Mitchell, - MGH. # **REFERENCE BOOK:** 1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis. # **BIG DATA ANALYTICS** B.Tech. III Year II Sem. L T P C # **Course Objectives:** - 1. The purpose of this course is to provide the students with the knowledge of Big data Analytics principles and techniques. - 2. This course is also designed to give an exposure of the frontiers of Big data Analytics # **Courses Outcomes:** - 1. Ability to explain the foundations, definitions, and challenges of Big Data and various Analytical tools. - 2. Ability to program using HADOOP and Map reduce, NOSQL - 3. Ability to understand the importance of Big Data in Social Media and Mining. #### UNIT - I **Introduction to Big Data**: Big Data and its Importance – Four V's of Big Data – Drivers for Big Data – Introduction to Big Data Analytics – Big Data Analytics applications. #### UNIT - II **Big Data Technologies:** Hadoop's Parallel World – Data discovery – Open source technology for Big Data Analytics – cloud and Big Data – Predictive Analytics – Mobile Business Intelligence and Big Data #### **UNIT - III** **Introduction Hadoop:** Big Data – Apache Hadoop & Hadoop Eco System – Moving Data in and out of Hadoop – Understanding inputs and outputs of MapReduce - Data Serialization. #### **UNIT - IV** **Hadoop Architecture:** Hadoop: RDBMS Vs Hadoop, Hadoop Overview, Hadoop distributors, HDFS, HDFS Daemons, Anatomy of File Write and Read., Name Node, Secondary Name Node, and Data Node, HDFS Architecture, Hadoop Configuration, Map Reduce Framework, Role of HBase in Big Data processing, HIVE, PIG. # **UNIT - V** **Data Analytics with R Machine Learning:** Introduction, Supervised Learning, Unsupervised Learning, Collaborative Filtering, Social Media Analytics, Mobile Analytics, Big Data Analytics with BigR. # **TEXT BOOKS:** - 1. Big Data Analytics, Seema Acharya, Subhasini Chellappan, Wiley 2015. - 2. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiely CIO Series, 2013. - 3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O"Reilly Media, 2012. - 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012. - 1. Big Data and Business Analytics, Jay Liebowitz, Auerbach Publications, CRC press (2013) - 2. Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop, Tom Plunkett, Mark Hornick, McGraw-Hill/Osborne Media (2013), Oracle press. - 3. Professional Hadoop Solutions, Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015. - 4. Understanding Big data, Chris Eaton, Dirk deroos et al. McGraw Hill, 2012. - 5. Intelligent Data Analysis, Michael Berthold, David J. Hand, Springer, 2007. - Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, 1st Edition, Wiley and SAS Business Series, 2012. # **SOFTWARE TESTING METHODOLOGIES (Professional Elective – III)** B.Tech. III Year II Sem. L T P C 3 0 0 3 Prerequisites: A course
on "Software Engineering". # **Course Objectives** - To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies. - To develop skills in software test automation and management using latest tools. **Course Outcomes**: Design and develop the best test strategies in accordance to the development model. #### UNIT - I Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs. Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing. # **UNIT - II** Transaction Flow Testing: transaction flows, transaction flow testing techniques. Dataflow testing: Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing. Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability. #### **UNIT - III** Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection. Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications. #### **UNIT - IV** State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips. #### **UNIT - V** Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner). #### **TEXT BOOKS:** - 1. Software Testing techniques Baris Beizer, Dreamtech, second edition. - 2. Software Testing Tools Dr. K. V. K. K. Prasad, Dreamtech. - 1. The craft of software testing Brian Marick, Pearson Education. - 2. Software Testing Techniques SPD(Oreille) - 3. Software Testing in the Real World Edward Kit, Pearson. - 4. Effective methods of Software Testing, Perry, John Wiley. - 5. Art of Software Testing Meyers, John Wiley. # DATA VISUALIZATION TECHNIQUES (Professional Elective – III) B.Tech. III Year II Sem. L T P C 3 0 0 3 **Course Objective:** To understand various data visualization techniques. #### **Course Outcomes:** - 1. Visualize the objects in different dimensions. - 2. Design and process the data for Virtualization. - 3. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical science. - 4. Apply the virtualization techniques for research projects. (K1, K3). #### UNIT - I **Introduction and Data Foundation:** Basics - Relationship between Visualization and Other Fields - The Visualization Process - Pseudo code Conventions - The Scatter plot. Data Foundation - Types of Data - Structure within and between Records - Data Preprocessing - Data Sets #### **UNIT - II** **Foundations for Visualization:** Visualization stages - Semiology of Graphical Symbols - The Eight Visual Variables - Historical Perspective - Taxonomies - Experimental Semiotics based on Perception Gibson's Affordance theory – A Model of Perceptual Processing. #### **UNIT - III** **Visualization Techniques: Spatial Data:** One-Dimensional Data - Two-Dimensional Data - Three-Dimensional Data - Dynamic Data - Combining Techniques. **Geospatial Data:** Visualizing Spatial Data - Visualization of Point Data - Visualization of Line Data - Visualization of Area Data - Other Issues in Geospatial Data Visualization **Multivariate Data:** Point-Based Techniques - Line- Based Techniques - Region-Based Techniques - Combinations of Techniques - Trees Displaying Hierarchical Structures - Graphics and Networks- Displaying Arbitrary Graphs/Networks. #### **UNIT - IV** Interaction Concepts and Techniques: Text and Document Visualization: Introduction - Levels of Text Representations - The Vector Space Model - Single Document Visualizations -Document Collection Visualizations - Extended Text Visualizations Interaction Concepts: Interaction Operators - Interaction Operands and Spaces - A Unified Framework. Interaction Techniques: Screen Space - Object-Space -Data Space -Attribute Space- Data Structure Space - Visualization Structure - Animating Transformations -Interaction Control #### **UNIT - V** **Research Directions in Virtualizations:** Steps in designing Visualizations – Problems in designing effective Visualizations- Issues of Data. Issues of Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware and Applications. # **TEXT BOOKS:** - 1. Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization Foundations, Techniques, Applications", 2010. - 2. Colin Ware, "Information Visualization Perception for Design", 2nd edition, Margon Kaufmann Publishers, 2004. - 1. Robert Spence "Information visualization Design for interaction", Pearson Education, 2nd Edition, 2007. - 2. Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008. # **SCRIPTING LANGUAGES (Professional Elective – III)** #### B.Tech. III Year II Sem. L T P C 3 0 0 3 # **Prerequisites:** - 1. A course on "Computer Programming and Data Structures". - 2. A course on "Object Oriented Programming Concepts". # **Course Objectives:** - This course introduces the script programming paradigm. - Introduces scripting languages such as Perl, Ruby and TCL. - Learning TCL # **Course Outcomes:** - Comprehend the differences between typical scripting languages and typical system and application programming languages. - Gain knowledge of the strengths and weakness of Perl, TCL and Ruby; and select an appropriate language for solving a given problem. - Acquire programming skills in scripting language. #### UNIT - I Introduction: Ruby, Rails, The structure and Excution of Ruby Programs, Package Management with RUBYGEMS, Ruby and web: Writing CGI scripts, cookies, Choice of Webservers, SOAP and webservices RubyTk - Simple Tk Application, widgets, Binding events, Canvas, scrolling #### **UNIT - II** Extending Ruby: Ruby Objects in C, the Jukebox extension, Memory allocation, Ruby Type System, Embedding Ruby to Other Languages, Embedding a Ruby Interperter #### **UNIT - III** Introduction to PERL and Scripting Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines. # **UNIT - IV** Advanced perl Finer points of looping, pack and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Isses. # **UNIT - V** # **TCL** TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface. #### Tk Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk. # **TEXT BOOKS:** - 1. The World of Scripting Languages, David Barron, Wiley Publications. - 2. Ruby Progamming language by David Flanagan and Yukihiro Matsumoto O'Reilly - 3. "Programming Ruby" The Pramatic Progammers guide by Dabve Thomas Second edition - 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J. Lee and B. Ware (Addison Wesley) Pearson Education. - 2. Perl by Example, E. Quigley, Pearson Education. - 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD. - 4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education. - 5. Perl Power, J. P. Flynt, Cengage Learning. # **MOBILE APPLICATION DEVELOPMENT (Professional Elective – III)** B.Tech. III Year II Sem. L T P C 3 0 0 3 # **Prerequisites:** - 1. Acquaintance with JAVA programming. - 2. A Course on DBMS. # **Course Objectives:** - To demonstrate their understanding of the fundamentals of Android operating systems - To improves their skills of using Android software development tools - To demonstrate their ability to develop software with reasonable complexity on mobile platform - To demonstrate their ability to deploy software to mobile devices - To demonstrate their ability to debug programs running on mobile devices # **Course Outcomes:** - Student understands the working of Android OS Practically. - Student will be able to develop Android user interfaces - Student will be able to develop, deploy and maintain the Android Applications. #### UNIT - I Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes # **UNIT - II** Android User Interface: Measurements – Device and pixel density independent measuring UNIT - s Layouts – Linear, Relative, Grid and Table Layouts User Interface (UI) Components – Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers Event Handling - Handling clicks or changes of various UI components Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions,
interfacing between fragments and Activities, Multi-screen Activities # **UNIT - III** Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity Notifications – Creating and Displaying notifications, Displaying Toasts #### **UNIT-IV** Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference # **UNIT - V** Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update) # **TEXT BOOKS:** - 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012. - 2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013. # **REFERENCE BOOK:** 2. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013. # CRYPTOGRAPHY AND NETWORK SECURITY (Professional Elective - III) B.Tech. III Year II Sem. L T P C 3 0 0 3 # **Course Objectives:** - Explain the objectives of information security. - Explain the importance and application of each of confidentiality, integrity, authentication and availability. - Understand various cryptographic algorithms. - Understand the basic categories of threats to computers and networks. - Describe public-key cryptosystem. - Describe the enhancements made to IPv4 by IPSec. - Understand Intrusions and intrusion detection. - Discuss the fundamental ideas of public-key cryptography. - Generate and distribute a PGP key pair and use the PGP package to send an encrypted email message. - Discuss Web security and Firewalls. # **Course Outcomes:** - Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues. - Ability to identify information system requirements for both of them such as client and server. - Ability to understand the current legal issues towards information security. #### UNIT - I **Security Concepts:** Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security. **Cryptography Concepts and Techniques:** Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks. # **UNIT - II** **Symmetric key Ciphers:** Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4. **Asymmetric key Ciphers:** Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm. # **UNIT - III** **Cryptographic Hash Functions:** Message Authentication, Secure Hash Algorithm (SHA-512), **Message authentication codes:** Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme. **Key Management and Distribution:** Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure. #### **UNIT-IV** **Transport-level Security:** Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH). **Wireless Network Security:** Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11i Wireless LAN Security. # **UNIT - V** **E-Mail Security:** Pretty Good Privacy, S/MIME **IP Security:** IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, Internet Key Exchange. **Case Studies on Cryptography and security:** Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability. # **TEXT BOOKS:** - 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition. - 2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition. - 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition. - 2. Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition. - 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India. - 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH. - 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning. - 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning. #### **MACHINE LEARNING LAB** B.Tech. III Year II Sem. L T P C 0 0 3 1.5 **Course Objective**: The objective of this lab is to get an overview of the various machine learning techniques and can able to demonstrate them using python. **Course Outcomes:** After the completion of the course the student can able to: - understand complexity of Machine Learning algorithms and their limitations; - understand modern notions in data analysis-oriented computing; - be capable of confidently applying common Machine Learning algorithms in practice and implementing their own; - Be capable of performing experiments in Machine Learning using real-world data. ## **List of Experiments** - 1. The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%) - 2. Extract the data from database using python - 3. Implement k-nearest neighbours classification using python - Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of kmeans clustering with 3 means (i.e., 3 centroids) | VAR1 | VAR2 | CLASS | |-------|-------|-------| | 1.713 | 1.586 | 0 | | 0.180 | 1.786 | 1 | | 0.353 | 1.240 | 1 | | 0.940 | 1.566 | 0 | | 1.486 | 0.759 | 1 | | 1.266 | 1.106 | 0 | | 1.540 | 0.419 | 1 | | 0.459 | 1.799 | 1 | | 0.773 | 0.186 | 1 | 5. The following training examples map descriptions of individuals onto high, medium and low credit-worthiness. ``` medium skiing design single twenties no -> highRisk hiah golf trading married forties yes -> lowRisk speedway transport married thirties yes -> medRisk medium football banking single thirties yes -> lowRisk high flying media married fifties yes -> highRisk football security single twenties no -> medRisk low single thirties yes -> medRisk medium golf media medium golf transport married forties yes -> lowRisk high skiing banking single thirties yes -> highRisk unemployed married forties yes -> highRisk ``` Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `medRisk' in the dataset? - 6. Implement linear regression using python. - 7. Implement Naïve Bayes theorem to classify the English text - 8. Implement an algorithm to demonstrate the significance of genetic algorithm - 9. Implement the finite words classification system using Back propagation algorithm #### **BIG DATA ANALYTICS LAB** B.Tech. III Year II Sem. L T P C 0 0 3 1.5 ## **Course Objectives:** - 1. The purpose of this course is to provide the students with the knowledge of Big data Analytics principles and techniques. - 2. This course is also designed to give an exposure of the frontiers of Big data Analytics #### **Course Outcomes:** - 1. Use Excel as an Analytical tool and visualization tool. - 2. Ability to program using HADOOP and Map reduce. - 3. Ability to perform data analytics using ML in R. - 4. Use cassandra to perform social media analytics. ## **List of Experiments:** - 1. Implement a simple map-reduce job that builds an inverted index on the set of input documents (Hadoop) - 2. Process big data in HBase - 3. Store and retrieve data in Pig - 4. Perform Social media analysis using cassandra - 5. Buyer event analytics using Cassandra on suitable product sales data. - 6. Using Power Pivot (Excel) Perform the following on any dataset - a) Big Data Analytics - b) Big Data Charting - 7. Use R-Project to carry out statistical analysis of big data - 8. Use R-Project for data visualization of social media data ## **TEXT BOOKS:** - 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015. - Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiely ClO Series, 2013. - 3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O"Reilly Media, 2012. - 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012. - 1. Big Data and Business Analytics, Jay Liebowitz, Auerbach Publications, CRC press (2013). - 2. Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop, Tom Plunkett, Mark Hornick, McGraw-Hill/Osborne Media (2013), Oracle press. - 3. Professional Hadoop Solutions, Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015. - 4. Understanding Big data, Chris Eaton, Dirk deroos et al., McGraw Hill, 2012. - 5. Intelligent Data Analysis, Michael Berthold, David J. Hand, Springer,
2007. - 6. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, 1st Edition, Wiley and SAS Business Series, 2012. #### **SOFTWARE TESTING METHODOLOGIES LAB (PE – III Lab)** B.Tech. III Year II Sem. L T P C 0 0 2 1 Prerequisites: A basic knowledge of programming. #### **Course Objectives:** - To provide knowledge of Software Testing Methods. - To develop skills in software test automation and management using latest tools. #### **Course Outcome:** Design and develop the best test strategies in accordance to the development model. ## **List of Experiments:** - 1. Recording in context sensitive mode and analog mode - 2. GUI checkpoint for single property - 3. GUI checkpoint for single object/window - 4. GUI checkpoint for multiple objects - 5. a) Bitmap checkpoint for object/window - a) Bitmap checkpoint for screen areabatabase checkpoint for Default check - Database checkpoint for custom check - 8. Database checkpoint for runtime record check - 9. a) Data driven test for dynamic test data submission - b) Data driven test through flat files - c) Data driven test through front grids - d) Data driven test through excel test - 10. a) Batch testing without parameter passing - b) Batch testing with parameter passing - 11. Data driven batch - 12. Silent mode test execution without any interruption - 13. Test case for calculator in windows application #### **TEXT BOOKS:** - 1. Software Testing techniques Baris Beizer, Dreamtech, second edition. - 2. Software Testing Tools Dr. K. V. K. K. Prasad, Dreamtech. - 1. The craft of software testing Brian Marick, Pearson Education. - 2. Software Testing Techniques SPD(Oreille) - 3. Software Testing in the Real World Edward Kit, Pearson. - 4. Effective methods of Software Testing, Perry, John Wiley. - 5. Art of Software Testing Meyers, John Wiley. ## DATA VISUALIZATION TECHNIQUES LAB (PE - III Lab) B.Tech. III Year II Sem. L T P C ## **Course Objectives:** - 1. Understand the various types of data, apply and evaluate the principles of data visualization. - 2. Acquire skills to apply visualization techniques to a problem and its associated dataset. #### **Course Outcomes:** - 1. Identify the different data types, visualization types to bring out the insight. - 2. Relate the visualization towards the problem based on the dataset to analyze and bring out valuable insight on a large dataset. - 3. Demonstrate the analysis of a large dataset using various visualization techniques and tools. - 4. Identify the different attributes and showcasing them in plots. Identify and create various visualizations for geospatial and table data. - 5. Ability to create and interpret plots using R/Python. ## **List of Experiments:** - 1. Acquiring and plotting data. - 2. Statistical Analysis such as Multivariate Analysis, PCA, LDA, Correlation regression and analysis of variance. - 3. Financial analysis using Clustering, Histogram and HeatMap. - 4. Time-series analysis stock market. - 5. Visualization of various massive dataset Finance Healthcare Census Geospatial. - 6. Visualization on Streaming dataset (Stock market dataset, weather forecasting). - 7. Market-Basket Data analysis-visualization. - 8. Text visualization using web analytics. #### **TEXT BOOKS:** - 1. Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization Foundations, Techniques, Applications", 2010. - 2. Colin Ware, "Information Visualization Perception for Design", 2nd edition, Margon Kaufmann Publishers. 2004. - 1. Robert Spence "Information visualization Design for interaction", Pearson Education, 2 nd Edition, 2007. - 2. Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008. ## SCRIPTING LANGUAGES LAB (PE – III Lab) B.Tech. III Year II Sem. L T P C 0 0 2 1 **Prerequisites:** Any High-level programming language (C, C++). ## **Course Objectives:** - 1. To Understand the concepts of scripting languages for developing web-based projects - 2. To understand the applications the of Ruby, TCL, Perl scripting languages ## **Course Outcomes:** - 1. Ability to understand the differences between Scripting languages and programming languages - 2. Able to gain some fluency programming in Ruby, Perl, TCL ## **List of Experiments:** - 1. Write a Ruby script to create a new string which is n copies of a given string where n is a non-negative integer - 2. Write a Ruby script which accept the radius of a circle from the user and compute the parameter and area. - 3. Write a Ruby script which accept the user's first and last name and print them in reverse order with a space between them - 4. Write a Ruby script to accept a filename from the user print the extension of that - 5. Write a Ruby script to find the greatest of three numbers - 6. Write a Ruby script to print odd numbers from 10 to 1 - 7. Write a Ruby scirpt to check two integers and return true if one of them is 20 otherwise return their sum - 8. Write a Ruby script to check two temperatures and return true if one is less than 0 and the other is greater than 100 - 9. Write a Ruby script to print the elements of a given array - 10. Write a Ruby program to retrieve the total marks where subject name and marks of a student stored in a hash - 11. Write a TCL script to find the factorial of a number - 12. Write a TCL script that multiplies the numbers from 1 to 10 - 13. Write a TCL script for Sorting a list using a comparison function - 14. Write a TCL script to (i)create a list (ii)append elements to the list (iii)Traverse the list (iv)Concatenate the list - 15. Write a TCL script to comparing the file modified times. - 16. Write a TCL script to Copy a file and translate to native format. - 17. a) Write a Perl script to find the largest number among three numbers. - b) Write a Perl script to print the multiplication tables from 1-10 using subroutines. - 18. Write a Perl program to implement the following list of manipulating functions - a)Shift - b)Unshift - c)Push - 19. a) Write a Perl script to substitute a word, with another word in a string. - b) Write a Perl script to validate IP address and email address. - 20. Write a Perl script to print the file in reverse order using command line arguments ## **TEXT BOOKS:** - 1. The World of Scripting Languages, David Barron, Wiley Publications. - 2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly 3. "Programming Ruby" The Pragmatic Programmer's guide by Dabve Thomas Second edition - 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education. - 2. Perl by Example, E. Quigley, Pearson Education. - 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD. - 4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education. - 5. Perl Power, J. P. Flynt, Cengage Learning. ## MOBILE APPLICATION DEVELOPMENT LAB (PE - III Lab) B.Tech. III Year II Sem. L T P C ## **Course Objectives:** - 1. To learn how to develop Applications in android environment. - 2. To learn how to develop user interface applications. - 3. To learn how to develop URL related applications. #### **Course Outcomes:** - 1. Students understand the working of Android OS Practically. - 2. Students will be able to develop user interfaces. - 3. Students will be able to develop, deploy and maintain the Android Applications. ## **List of Experiments:** - 1. Create an Android application that shows Hello + name of the user and run it on an emulator. - (b) Create an application that takes the name from a text box and shows hello message along with the name entered in text box, when the user clicks the OK button. - 2. Create a screen that has input boxes for User Name, Password, Address, Gender (radio buttons for male and female), Age (numeric), Date of Birth (Date Picket), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button. Use (a) Linear Layout (b) Relative Layout and (c) Grid Layout or Table Layout. - 3. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a "Back" button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on right fragment instead of second screen with back button. Use Fragment transactions and Rotation event listener. - 4. Develop an application that uses a menu with 3 options for dialing a number, opening a website and to send an SMS. On selecting an option, the appropriate action should be invoked using intents. - 5. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification. - 6. Create an application that uses a text file to store user names and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with Login Failed message. - 7. Create a user registration application that stores the user details in a database table. - 8. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user. - 9. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table. - 10. Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc. PRINCETON INSTITUTE OF ENGINEERING 8 TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V)
Charlesar (M), Medchal Dirt. 7 5-50008/ - 11. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts. - 12. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time. - 13. Create an application that shows the given URL (from a text field) in a browser ## **TEXT BOOKS:** - 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012. - 2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013. #### **REFERENCE BOOK:** 1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013. ## CRYPTOGRAPHY AND NETWORK SECURITY LAB (PE – III Lab) B.Tech. III Year II Sem. L T P C 0 0 2 1 ## **Course Objectives:** - 1. Explain the objectives of information security. - 2. Explain the importance and application of each of confidentiality, integrity, authentication and availability. - 3. Understand various cryptographic algorithms. #### **Course Outcomes:** - 1. Understand basic cryptographic algorithms, message and web authentication and security issues. - 2. Identify information system requirements for both of them such as client and server. - 3. Understand the current legal issues towards information security. ## **List of Experiments:** - 1. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should XOR each character in this string with 0 and displays the result. - 2. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should AND or and XOR each character in this string with 127 and display the result. - 3. Write a Java program to perform encryption and decryption using the following algorithms a. Ceaser cipher b. Substitution cipher c. Hill Cipher - 4. Write a C/JAVA program to implement the DES algorithm logic. - 5. Write a C/JAVA program to implement the Blowfish algorithm logic. - 6. Write a C/JAVA program to implement the Rijndael algorithm logic. - 7. Write the RC4 logic in Java Using Java cryptography; encrypt the text "Hello world" using Blowfish. Create your own key using Java key tool. - 8. Write a Java program to implement RSA algorithm. - 9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript. - 10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA. - 11. Calculate the message digest of a text using the MD5 algorithm in JAVA. #### **TEXT BOOKS:** - 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition. - 2. Cryptography and Network Security: Atul Kahate, McGraw Hill, 3rd Edition. - 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition. - 2. Cryptography and Network Security: Forouzan Mukhopadhyay, McGraw Hill, 3rd Edition. - 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India. - 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH. - 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning. - 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning. #### **ENVIRONMENTAL SCIENCE** B.Tech. III Year II Sem. L T P C 3 0 0 0 ## **Course Objectives:** - Understanding the importance of ecological balance for sustainable development. - Understanding the impacts of developmental activities and mitigation measures. - Understanding the environmental policies and regulations #### **Course Outcomes:** Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development ## **UNIT-I** **Ecosystems:** Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits. #### **UNIT-II** **Natural Resources: Classification of Resources:** Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies. ## **UNIT-III** **Biodiversity And Biotic Resources:** Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act. ## **UNIT-IV** Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary. Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts: Climate** change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-Gol Initiatives. #### **UNIT-V** **Environmental Policy, Legislation & EIA:** Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on impacts of air, water, biological and Socio- Principal PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesor (M), Medchal Dirt. T S-50008/ economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style. #### **TEXT BOOKS:** - 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission. - 2 Environmental Studies by R. Rajagopalan, Oxford University Press. - 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi. - 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd. - 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition. - 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers. - 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications. - 6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications. #### PREDICTIVE ANALYTICS B.Tech. IV Year I Sem. L T P C 3 0 0 3 **Course Objectives:** The course serves to advance and refine expertise on theories, approaches and techniques related to prediction and forecasting. #### **Course Outcomes** - 1. Understand prediction-related principles, theories and approaches. - 2. Learn model assessment and validation. - 3. Understand the basics of predictive techniques and statistical approaches. - 4. Analyze supervised and unsupervised algorithms. #### UNIT - I Linear Methods for Regression and Classification: Overview of supervised learning, Linear regression models and least squares, Multiple regression, Multiple outputs, Subset selection, Ridge regression, Lasso regression, Linear Discriminant Analysis, Logistic regression, Perceptron learning algorithm. #### **UNIT - II** Model Assessment and Selection: Bias, Variance, and model complexity, Bias-variance trade off, Optimism of the training error rate, Estimate of In-sample prediction error, Effective number of parameters, Bayesian approach and BIC, Cross- validation, Boot strap methods, conditional or expected test error. #### **UNIT - III** Additive Models, Trees, and Boosting: Generalized additive models, Regression and classification trees, Boosting methods-exponential loss and AdaBoost, Numerical Optimization via gradient boosting, Examples (Spam data, California housing, New Zealand fish, Demographic data). #### **UNIT - IV** Neural Networks (NN), Support Vector Machines (SVM), and K-nearest Neighbor: Fitting neural networks, Back propagation, Issues in training NN, SVM for classification, Reproducing Kernels, SVM for regression, K-nearest – Neighbour classifiers (Image Scene Classification). #### **UNIT - V** Unsupervised Learning and Random forests: Association rules, Cluster analysis, Principal Components, Random forests and analysis. ## **TEXT BOOK:** 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning-Data Mining, Inference, and Prediction, Second Edition, Springer Verlag, 2009. - 1. C.M.Bishop –Pattern Recognition and
Machine Learning, Springer, 2006. - 2. L. Wasserman-All of statistics. - 3. Gareth James. Daniela Witten. Trevor Hastie Robert Tibshirani. An Introduction to Statistical Learning with Applications in R. #### WEB AND SOCIAL MEDIA ANALYTICS B.Tech. IV Year I Sem. L T P C 2 0 0 2 Course Objectives: Exposure to various web and social media analytic techniques. #### **Course Outcomes:** - 1. Knowledge on decision support systems. - 2. Apply natural language processing concepts on text analytics. - 3. Understand sentiment analysis. - 4. Knowledge on search engine optimization and web analytics. ## UNIT - I An Overview of Business Intelligence, Analytics, and Decision Support: Analytics to Manage a Vaccine Supply Chain Effectively and Safely, Changing Business Environments and Computerized Decision Support, Information Systems Support for Decision Making, The Concept of Decision Support Systems (DSS), Business Analytics Overview, Brief Introduction to Big Data Analytics. #### **UNIT - II** **Text Analytics and Text Mining:** Machine Versus Men on Jeopardy!: The Story of Watson, Text Analytics and Text Mining Concepts and Definitions, Natural Language Processing, Text Mining Applications, Text Mining Process, Text Mining Tools. #### **UNIT - III** **Sentiment Analysis:** Sentiment Analysis Overview, Sentiment Analysis Applications, Sentiment Analysis Process, Sentiment Analysis and Speech Analytics. #### **UNIT - IV** Web Analytics, Web Mining: Security First Insurance Deepens Connection with Policyholders, Web Mining Overview, Web Content and Web Structure Mining, Search Engines, Search Engine Optimization, Web Usage Mining (Web Analytics), Web Analytics Maturity Model and Web Analytics Tools. #### **UNIT - V** **Social Analytics and Social Network Analysis:** Social Analytics and Social Network Analysis, Social Media Definitions and Concepts, Social Media Analytics. **Prescriptive Analytics - Optimization and Multi-Criteria Systems:** Multiple Goals, Sensitivity Analysis, What-If Analysis, and Goal Seeking. ## **TEXT BOOK:** 1. Ramesh Sharda, Dursun Delen, Efraim Turban, BUSINESS INTELLIGENCE AND ANALYTICS: SYSTEMS FOR DECISION SUPPORT, Pearson Education. - 1. Rajiv Sabherwal, Irma Becerra-Fernandez," Business Intelligence Practice, Technologies and Management", John Wiley 2011. - 2. Lariss T. Moss, ShakuAtre, "Business Intelligence Roadmap", Addison-Wesley It Service. - 3. Yuli Vasiliev, "Oracle Business Intelligence: The Condensed Guide to Analysis and Reporting", SPD Shroff, 2012. ## QUANTUM COMPUTING (Professional Elective – IV) B.Tech. IV Year I Sem. L T P C 3 0 0 3 ## **Course Objectives:** - 1. To introduce the fundamentals of quantum computing - 2. The problem-solving approach using finite dimensional mathematics #### **Course Outcomes:** - 1. Understand basics of quantum computing - 2. Understand physical implementation of Qubit - 3. Understand Quantum algorithms and their implementation - 4. Understand the Impact of Quantum Computing on Cryptography #### UNIT - I **Introduction to Essential Linear Algebra:** Some Basic Algebra, Matrix Math, Vectors and Vector Spaces, Set Theory. **Complex Numbers:** Definition of Complex Numbers, Algebra of Complex Numbers, Complex Numbers Graphically, Vector Representations of Complex Numbers, Pauli Matrice, Transcendental Numbers. #### **UNIT - II** **Basic Physics for Quantum Computing:** The Journey to Quantum, Quantum Physics Essentials, Basic Atomic Structure, Hilbert Spaces, Uncertainty, Quantum States, Entanglement. **Basic Quantum Theory:** Further with Quantum Mechanics, Quantum Decoherence, Quantum Electrodynamics, Quantum Chromodynamics, Feynman Diagram Quantum Entanglement and QKD, Quantum Entanglement, Interpretation, QKE. #### **UNIT - III** **Quantum Architecture:** Further with Qubits, Quantum Gates, More with Gates, Quantum Circuits, The D-Wave Quantum Architecture. **Quantum Hardware:** Qubits, How Many Qubits Are Needed? Addressing Decoherence, Topological Quantum Computing, Quantum Essentials. #### **UNIT - IV** **Quantum Algorithms:** What Is an Algorithm? Deutsch's Algorithm, Deutsch-Jozsa Algorithm, Bernstein-Vazirani Algorithm, Simon's Algorithm, Shor's Algorithm, Grover's Algorithm. ## UNIT - V **Current Asymmetric Algorithms:** RSA, Diffie-Hellman, Elliptic Curve. **The Impact of Quantum Computing on Cryptography:** Asymmetric Cryptography, Specific Algorithms, Specific Applications. ## **TEXT BOOKS:** - 1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge University Press - 2. Dr. Chuck Easttom, Quantum Computing Fundamentals, Pearson - 1. Quantum Computing for Computer Scientists by Noson S. Yanofsky and Mirco A. Mannucci - 2. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. Basic Concepts. Vol. Basic Tools and Special Topics, World Scientific. - 3. Pittenger A. O., An Introduction to Quantum Computing Algorithms. ## **DATABASE SECURITY (Professional Elective – IV)** B.Tech. IV Year I Sem. L T P C 3 0 0 3 ## **Course Objectives:** - To learn the security of databases - To learn the design techniques of database security - To learn the secure software design #### **Course Outcomes:** - Ability to carry out a risk analysis for large database. - Ability to set up, and maintain the accounts with privileges and roles. #### UNIT - I **Introduction**: Introduction to Databases Security Problems in Databases Security Controls Conclusions. **Security Models -1**: Introduction Access Matrix Model Take-Grant Model Acten Model PN Model Hartson and Hsiao's Model Fernandez's Model Bussolati and Martella's Model for Distributed databases. #### **UNIT - II** **Security Models -2:** Bell and LaPadula's Model Biba's Model Dion's Model Sea View Model Jajodia and Sandhu's Model The Lattice Model for the Flow Control conclusion. **Security Mechanisms**: Introduction User Identification/Authentication Memory Protection Resource Protection Control Flow Mechanisms Isolation Security Functionalities in Some Operating Systems Trusted Computer System Evaluation Criteria. #### **UNIT - III** **Security Software Design**: Introduction A Methodological Approach to Security Software Design, Secure Operating System Design, Secure DBMS Design Security Packages Database Security Design **Statistical Database Protection & Intrusion Detection Systems:** Introduction Statistics Concepts and Definitions, Types of Attacks, Inference Controls, Evaluation Criteria for Control Comparison. Introduction IDES System RETISS System ASES System Discovery. #### **UNIT - IV** **Models for the Protection of New Generation Database Systems -1:** Introduction A Model for the Protection of Frame Based Systems A Model for the Protection of Object-Oriented Systems SORION Model for the Protection of Object-Oriented Databases. #### **UNIT - V** **Models for the Protection of New Generation Database Systems -2:** A Model for the Protection of New Generation Database Systems: the Orion Model ajodia and Kogan's Model A Model for the Protection of Active Databases Conclusions. #### **TEXT BOOKS:** - 1. Database Security by Castano, Pearson Edition - 2. Database Security and Auditing: Protecting Data Integrity and Accessibility, 1st Edition, Hassan Afyouni, THOMSON Edition. ## **REFERENCE BOOK:** 1. Database security by Alfred basta, melissazgola, CENGAGE learning. ## NATURAL LANGUAGE PROCESSING (Professional Elective – IV) B.Tech. IV Year I Sem. L T P C 3 0 0 3 Prerequisites: Data structures, finite automata and probability theory ## **Course Objectives:** Introduce to some of the problems and solutions of NLP and their relation to linguistics and statistics. #### **Course Outcomes:** - Show sensitivity to linguistic phenomena and an ability to model them with formal grammars. - Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems - Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods. - Able to design, implement, and analyze NLP algorithms - Able to design different language modeling Techniques. #### UNIT - I **Finding the Structure of Words:** Words and Their Components, Issues and Challenges, Morphological Models **Finding the Structure of Documents:** Introduction, Methods, Complexity of the Approaches, Performances of the Approaches #### **UNIT - II** **Syntax Analysis:** Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms, Models for Ambiguity Resolution in Parsing, Multilingual Issues #### **UNIT - III** **Semantic Parsing:** Introduction, Semantic Interpretation, System Paradigms, Word Sense Systems, Software. #### **UNIT - IV** Predicate-Argument Structure, Meaning Representation Systems, Software. #### **UNIT - V** **Discourse Processing:** Cohension, Reference Resolution, Discourse Cohension and Structure **Language Modeling:** Introduction, N-Gram Models, Language Model Evaluation, Parameter Estimation, Language Model Adaptation, Types of Language Models, Language-Specific Modeling Problems, Multilingual and Cross lingual Language Modeling ## **TEXT BOOKS:** - 1. Multilingual natural Language Processing Applications: From Theory to Practice Daniel M. Bikel and Imed Zitouni, Pearson Publication. - 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary. ## **REFERENCE BOOK:** 1. Speech and Natural Language Processing - Daniel Jurafsky & James H Martin, Pearson Publications. PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) thankesay (M), Medchal Dist. T.S. 50008/ years ## INFORMATION STORAGE MANAGEMENT (Professional Elective – IV) B.Tech. IV Year I Sem. L T P C 3 0 0 3 ## **Course Objectives:** - 1. To understand the basic components of Storage System Environment. - 2. To understand the Storage Area Network Characteristics and
Components. - 3. To examine emerging technologies including IP-SAN. - 4. To describe the different backup and recovery topologies and their role in providing disaster recovery and business continuity capabilities. - 5. To understand the local and remote replication technologies. #### **Course Outcomes:** - 1. Understand the logical and physical components of a Storage infrastructure. - 2. Evaluate storage architectures, including storage subsystems, DAS, SAN, NAS, and CAS. - 3. Understand the various forms and types of Storage Virtualization. - 4. Describe the different roles in providing disaster recovery and business continuity capabilities. - 5. Distinguish different remote replication technologies. #### UNIT - I **Introduction to Storage Technology:** Data proliferation and the varying value of data with time & usage, Sources of data and states of data creation, Data center requirements and evolution to accommodate storage needs, Overview of basic storage management skills and activities, The five pillars of technology, Overview of storage infrastructure components, Evolution of storage, Information Lifecycle Management concept, Data categorization within an enterprise, Storage and Regulations. #### **UNIT - II** **Storage Systems Architecture:** Intelligent disk subsystems overview, Contrast of integrated vs. Modular arrays, Component architecture of intelligent disk subsystems, Disk physical structure-components, properties, performance, and specifications, Logical partitioning of disks, RAID & parity algorithms, hot sparing, Physical vs. logical disk organization, protection, and back end management, Array caching properties and algorithms, Front end connectivity and queuing properties, Front end to host storage provisioning, mapping, and operation, Interaction of file systems with storage, Storage system connectivity protocols. ## **UNIT - III** Introduction to Networked Storage: JBOD, DAS, SAN, NAS, & CAS evolution, Direct Attached Storage (DAS) environments: elements, connectivity, & management, Storage Area Networks (SAN): elements & connectivity, Fibre Channel principles, standards, & network management principles, SAN management principles, Network Attached Storage (NAS): elements, connectivity options, connectivity protocols (NFS, CIFS, ftp), & management principles, IP SAN elements, standards (iSCSI, FCIP, iFCP), connectivity principles, security, and management principles, Content Addressable Storage (CAS): elements, connectivity options, standards, and management principles, Hybrid Storage - solutions overview including technologies like virtualization & appliances. ## **UNIT - IV** Introductions to Information Availability: Business Continuity and Disaster Recovery Basics, Local business continuity techniques, Remote business continuity techniques, Disaster Recovery principles & techniques. Managing & Monitoring: Management philosophies (holistic vs. system & component), Industry management standards (SNMP, SMI-S, CIM), Standard framework applications, Key management metrics (thresholds, availability, capacity, security, performance), Metric analysis methodologies & trend analysis, Reactive and proactive management best practices, Provisioning & configuration change planning, Problem reporting, prioritization, and handling techniques, Management tools overview. ## **UNIT - V** **Securing Storage and Storage Virtualization:** Define storage security. List the critical security attributes for information systems, describe the elements of a shared storage model and security extensions, Define storage security domains, List and analyze the common threats in each domain, Identify different virtualization technologies, describe block-level and file level virtualization technologies and processes. #### **TEXT BOOKS:** - 1. Marc Farley Osborne, "Building Storage Networks", Tata McGraw Hill, 2001. - 2. Robert Spalding and Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, 2003. - 3. Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Ltd., 2002. - 1. Gerald J Kowalski and Mark T Maybury," Information Storage Retrieval Systems theory & Implementation", BS Publications, 2000. - 2. Thejendra BS, "Disaster Recovery & Business continuity", Shroff Publishers & Distributors, 2006. ## **INTERNET OF THINGS (Professional Elective – IV)** #### B.Tech. III Year II Sem. L T P C 3 0 0 3 ## **Course Objectives:** - 1. To introduce the terminology, technology and its applications - 2. To introduce the concept of M2M (machine to machine) with necessary protocols - 3. To introduce the Python Scripting Language which is used in many IoT devices - 4. To introduce the Raspberry PI platform, that is widely used in IoT applications - 5. To introduce the implementation of web-based services on IoT devices #### **Course Outcomes:** - 1. Interpret the impact and challenges posed by IoT networks leading to new architectural models. - 2. Compare and contrast the deployment of smart objects and the technologies to connect them to the network - 3. Appraise the role of IoT protocols for efficient network communication. - 4. Elaborate the need for Data Analytics and Security in IoT. - 5. Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry. #### UNIT - I Introduction to Internet of Things –Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT communication models, Iot Communication APIs IoT enabaled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle #### **UNIT - II** IoT and M2M – Software defined networks, network function virtualization, difference between SDN and NFV for IoT Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER ## **UNIT - III** Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib #### **UNIT - IV** IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins. #### **UNIT - V** IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs Webserver – Web server for IoT, Cloud for IoT, Python web application framework Designing a RESTful web API #### **TEXT BOOKS:** - 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547. - Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759. PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesor (M), Medchal Dirt. T.S.50008/ ## PRIVACY PRESERVING IN DATA MINING (Professional Elective – V) B.Tech. IV Year I Sem. L T P C 3 0 0 3 Prerequisites: A course on "Data Mining". #### **Course Objectives:** - 1. The aim of the course is to introduce the fundamentals of Privacy Preserving Data Mining Methods - 2. The course gives an overview of Anonymity and its Measures, Multiplicative Perturbation for Privacy-Preserving Data Mining, techniques for Utility-based Privacy Preserving Data #### **Course Outcomes:** - 1. Understand the concepts of Privacy Preserving Data Mining Models and Algorithms. - 2. Demonstrate a comprehensive understanding of different tasks associated in Inference Control Methods for Privacy-Preserving Data Mining. - 3. Understand the concepts of Data Anonymization Methods and its Measures. - 4. Evaluate and Appraise the solution designed for Multiplicative Perturbation. - 5. Formulate, Design and Implement the solutions for Utility-based Privacy Preserving Data. #### UNIT - I Introduction, Privacy-Preserving Data Mining Algorithms, The Randomization Method, Group Based Anonymization, Distributed Privacy-Preserving Data Mining #### **UNIT - II** #### **Interface Control Methods** Introduction, A Classification of Microdata Protection Methods, Perturbative Masking Methods, Non-Perturbative Masking Methods, Synthetic Microdata Generation, Trading off Information Loss and Disclosure Risk. ## **UNIT - III** ## **Measure of Anonymity** Data Anonymization Methods, A Classification of Methods, Statistical Measure of Anonymous, Probabilistic Measure of Anonymity, Computational Measure of Anonymity, reconstruction Methods for Randomization, Application of Randomization #### **UNIT - IV** ## **Multiplicative Perturbation** Definition of Multiplicative Perturbation, Transformation Invariant Data Mining Models, Privacy Evaluation for Multiplicative Perturbation, Attack Resilient Multiplicative Perturbation, Metrics for Quantifying Privacy Level, Metrics for Quantifying Hiding Failure, Metrics for Quantifying Data Quality. #### **UNIT - V** ## **Utility-Based Privacy-Preserving Data** Types of Utility-Based Privacy Preserving Methods, Utility-Based Anonymization Using Local Recording, The Utility-Based Privacy Preserving Methods in Classification Problems, Anonymization Merginal: Injection Utility into Anonymization Data Sets. ## **TEXT BOOK:** 1. Privacy – Preserving Data Mining: Models and Algorithms Edited by Charu C. Aggarwal and S. Yu. Springer. ## **REFERENCE BOOKS:** - 1. Charu C. Agarwal, Data Mining: The Textbook, 1st Edition, Springer. - 2. J. Han and M. Kamber, Data Mining: Concepts and Techniques, 3rd Edition, Elsevier. - 3. Privacy Preserving Data Mining by Jaideep Vaidya, Yu Michael Zhu and Chirstopher W. Clifton, Springer. Principal PRINCETON INSTITUTE OF ENGINEERING 8 TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V)
Charlesor (M), Medchal Diri. T S-50008/ ## **CLOUD COMPUTING (Professional Elective – V)** B.Tech. IV Year I Sem. L T P C 3 0 0 3 Pre-requisites: Courses on Computer Networks, Operating Systems, Distributed Systems. ## **Course Objectives:** - 1. This course provides an insight into cloud computing. - 2. Topics covered include- distributed system models, different cloud service models, serviceoriented architectures, cloud programming and software environments, resource management. #### **Course Outcomes:** - 1. Ability to understand various service delivery models of a cloud computing architecture. - 2. Ability to understand the ways in which the cloud can be programmed and deployed. - 3. Understanding cloud service providers. #### UNIT - I **Computing Paradigms:** High-Performance Computing, Parallel Computing, Distributed Computing, Cluster Computing, Grid Computing, Cloud Computing, Bio computing, Mobile Computing, Quantum Computing, Optical Computing, Nano computing. #### **UNIT - II** **Cloud Computing Fundamentals**: Motivation for Cloud Computing, The Need for Cloud Computing, Defining Cloud Computing, Definition of Cloud computing, Cloud Computing Is a Service, Cloud Computing Is a Platform, Principles of Cloud computing, Five Essential Characteristics, Four Cloud Deployment Models. #### **UNIT - III** Cloud Computing Architecture and Management: Cloud architecture, Layer, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications, on the Cloud, Managing the Cloud, Managing the Cloud Infrastructure Managing the Cloud application, Migrating Application to Cloud, Phases of Cloud Migration Approaches for Cloud Migration. ## **UNIT - IV** Cloud Service Models: Infrastructure as a Service, Characteristics of IaaS. Suitability of IaaS, Pros and Cons of IaaS, Summary of IaaS Providers, Platform as a Service, Characteristics of PaaS, Suitability of PaaS, Pros and Cons of PaaS, Summary of PaaS Providers, Software as a Service, Characteristics of SaaS, Suitability of SaaS, Pros and Cons of SaaS, Summary of SaaS Providers, Other Cloud Service Models. ## **UNIT V** Cloud Service Providers: EMC, EMC IT, Captiva Cloud Toolkit, Google, Cloud Platform, Cloud Storage, Google Cloud Connect, Google Cloud Print, Google App Engine, Amazon Web Services, Amazon Elastic Compute Cloud, Amazon Simple Storage Service, Amazon Simple Queue ,service, Microsoft, Windows Azure, Microsoft Assessment and Planning Toolkit, SharePoint, IBM, Cloud Models, IBM Smart Cloud, SAP Labs, SAP HANA Cloud Platform, Virtualization Services Provided by SAP, Sales force, Sales Cloud, Service Cloud: Knowledge as a Service, Rack space, VMware, Manjra soft, Aneka Platform. ## **TEXT BOOK:** 1. Essentials of cloud Computing: K. Chandrasekhran, CRC press, 2014 - 1. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011. - 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012. - 3. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, p 2011. ## DATA SCIENCE APPLICATIONS (Professional Elective - V) B.Tech. IV Year I Sem. L T P C 3 0 0 3 **Course Objective:** To give deep knowledge of data science and how it can be applied in various fields to make life easy. Course Outcomes: After completion of course, students would: - 1. To correlate data science and solutions to modern problems. - 2. To decide when to use which type of technique in data science. ## UNIT - I Data Science Applications in various domains, Challenges and opportunities, tools for data scientists, Recommender systems – Introduction, methods, application, challenges. #### **UNIT - II** Time series data – stock market index movement forecasting. Supply Chain Management – Real world case study in logistics. #### UNIT - III Data Science in Education, Social media. #### **UNIT - IV** Data Science in Healthcare, Bioinformatics. #### **UNIT - V** Case studies in data optimization using Python. ## **TEXT BOOKS:** - 1. Aakanksha Sharaff, G.K.Sinha, "Data Science and its applications", CRC Press, 2021. - 2. Q. A. Menon, S. A. Khoja, "Data Science: Theory, Analysis and Applications", CRC Press, 2020. ## MINING MASSIVE DATASETS (Professional Elective – V) B.Tech. IV Year I Sem. L T P C 3 0 0 3 **Prerequisites:** Students should be familiar with Data mining, algorithms, basic probability theory and Discrete math. ## **Course Objectives:** - 1. This course will cover practical algorithms for solving key problems in mining of massive datasets - 2. This course focuses on parallel algorithmic techniques that are used for large datasets. - 3. This course will cover stream processing algorithms for data streams that arrive constantly, page ranking algorithms for web search, and online advertisement systems that are studied in detail. #### **Course Outcomes:** - 1. Handle massive data using MapReduce. - 2. Develop and implement algorithms for massive data sets and methodologies in the context of data mining. - 3. Understand the algorithms for extracting models and information from large datasets - 4. Develop recommendation systems. - 5. Gain experience in matching various algorithms for particular classes of problems. #### UNIT - I Data Mining-Introduction-Definition of Data Mining-Statistical Limits on Data Mining, **MapReduce and the New Software Stack-**Distributed File Systems, MapReduce, Algorithms Using MapReduce. #### **UNIT - II** **Similarity Search:** Finding Similar Items-Applications of Near-Neighbor Search, Shingling of Documents, Similarity-Preserving Summaries of Sets, Distance Measures. **Streaming Data:** Mining Data Streams-The Stream Data Model, Sampling Data in a Stream, Filtering Streams. #### **UNIT - III** **Link Analysis**-PageRank, Efficient Computation of PageRank, Link Spam. **Frequent Itemsets** - Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream. **Clustering**-The CURE Algorithm, Clustering in Non-Euclidean Spaces, Clustering for Streams and Parallelism. ## **UNIT - IV** **Advertising on the Web-**Issues in On-Line Advertising, On-Line Algorithms, The Matching Problem, The Adwords Problem, Adwords Implementation. **Recommendation Systems -** A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering, Dimensionality Reduction, The NetFlix Challenge. #### **UNIT - V** **Mining Social-Network Graphs-**Social Networks as Graphs, Clustering of Social-Network Graphs, Partitioning of Graphs, Simrank, Counting Triangles. #### **TEXT BOOKS:** 1. Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, 3rd Edition. ## **REFERENCE BOOKS:** - 1. Jiawei Han & Micheline Kamber, Data Mining Concepts and Techniques 3rd Edition Elsevier. - 2. Margaret H Dunham, Data Mining Introductory and Advanced topics, PEA. - 3. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann. PRINCETON INSTITUTE OF ENGINEERING 8 TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V), Charlesay (M), Medchal Dirt. T S-50008/ ## **EXPLORATORY DATA ANALYSIS (Professional Elective – V)** B.Tech. IV Year I Sem. L T P C 3 0 0 3 ## **Course Objectives:** - 1. This course introduces the methods for data preparation and data understanding. - 2. It covers essential exploratory techniques for understanding multivariate data by summarizing it through statistical methods and graphical methods. - 3. Supports to Summarize the insurers use of predictive analytics, data science and Data Visualization. #### **Course Outcomes:** - 1. Handle missing data in the real-world data sets by choosing appropriate methods. - 2. Summarize the data using basic statistics. Visualize the data using basic graphs and plots. - 3. Identify the outliers if any in the data set. - 4. Choose appropriate feature selection and dimensionality reduction. - 5. Techniques for handling multi-dimensional data. #### UNIT - I: **Introduction to Exploratory Data Analysis:** Data Analytics lifecycle, Exploratory Data Analysis (EDA)— Definition, Motivation, Steps in data exploration, The basic data types Data Type Portability. #### UNIT - II: **Preprocessing - Traditional Methods and Maximum Likelihood Estimation:** Introduction to Missing data, Traditional methods for dealing with missing data, Maximum Likelihood Estimation – Basics, Missing data handling, Improving the accuracy of analysis. **Preprocessing Bayesian Estimation:** Introduction to Bayesian Estimation, Multiple Imputation-Imputation Phase, Analysis and Pooling Phase, Practical Issues in Multiple Imputation, Models for Missing Notation Random Data. #### **UNIT - III:** **Data Summarization & Visualization:** Statistical data elaboration, 1-D Statistical data analysis, 2-D Statistical data Analysis, N-D Statistical data analysis. ## **UNIT - IV:** **Outlier Analysis:** Introduction, Extreme Value Analysis, Clustering based, Distance Based and Density Based outlier analysis, Outlier Detection in Categorical Data. **Feature Subset Selection:** Feature selection algorithms: filter methods, wrapper methods and embedded methods, Forward selection backward elimination, Relief, greedy selection, genetic algorithms for features selection. #### **UNIT - V** **Dimensionality Reduction:** Introduction, Principal Component Analysis (PCA), Kernel PCA, Canonical Correlation Analysis, Factor Analysis, Multidimensional scaling, Correspondence Analysis. #### **TEXT BOOKS:** 1. Making sense of Data: A practical Guide to Exploratory Data Analysis and Data Mining, by Glenn J. Myatt. - 1. Charu C. Aggarwal, "Data Mining The Text book", Springer, 2015. - 2. Craig K. Enders, "Applied Missing Data Analysis", The Guilford Press, 2010. - 3. Inge Koch, "Analysis of Multivariate and High dimensional data", Cambridge University Press, 2014. - 4. Michael Jambu, "Exploratory and multivariate data
analysis", Academic Press Inc., 1990. - 5. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC press, 2015. #### WEB AND SOCIAL MEDIA ANALYTICS LAB B.Tech. IV Year I Sem. L T P C 0 0 2 1 Course Objectives: Exposure to various web and social media analytic techniques. #### **Course Outcomes:** - 1. Knowledge on decision support systems. - 2. Apply natural language processing concepts on text analytics. - 3. Understand sentiment analysis. - 4. Knowledge on search engine optimization and web analytics. ## **List of Experiments** - 1. Preprocessing text document using NLTK of Python - a. Stopword elimination - b. Stemming - c. Lemmatization - d. POS tagging - e. Lexical analysis - 2. Sentiment analysis on customer review on products - 3. Web analytics - a. Web usage data (web server log data, clickstream analysis) - b. Hyperlink data - 4. Search engine optimization- implement spamdexing - 5. Use Google analytics tools to implement the following - a. Conversion Statistics - b. Visitor Profiles - 6. Use Google analytics tools to implement the Traffic Sources. ## **Resources:** - 1. Stanford core NLP package - 2. GOOGLE.COM/ANALYTICS ## **TEXT BOOKS:** 1. Ramesh Sharda, Dursun Delen, Efraim Turban, BUSINESS INTELLIGENCE AND ANALYTICS: SYSTEMS FOR DECISION SUPPORT, Pearson Education. - 1. Rajiv Sabherwal, Irma Becerra- Fernandez," Business Intelligence —Practice, Technologies and Management", John Wiley 2011. - 2. Lariss T. Moss, Shaku Atre, "Business Intelligence Roadmap", Addison-Wesley It Service. - 3. Yuli Vasiliev, "Oracle Business Intelligence: The Condensed Guide to Analysis and Reporting", SPD Shroff, 2012. #### **ORGANIZATIONAL BEHAVIOUR** B.Tech. IV Year II Sem. L T P C 3 0 0 3 **Course Objectives:** The objective of the course is to provide the students with the conceptual framework and the theories underlying Organizational Behavior. #### **Course Outcomes:** - 1. Demonstrate the applicability of analyzing the complexities associated with management of individual behavior in the organization. - 2. Analyze the complexities associated with management of the group behavior in the organization. - 3. Demonstrate how the organizational behavior can integrate in understanding the motivation (why) behind behavior of people in the organization. #### UNIT - I: Introduction to OB - Definition, Nature and Scope – Environmental and organizational context – Impact of IT, globalization, Diversity, Ethics, culture, reward systems and organizational design on Organizational Behaviour. Cognitive Processes-I: Perception and Attribution: Nature and importance of Perception – Perceptual selectivity and organization – Social perception – Attribution Theories – Locus of control – Attribution Errors – Impression Management. #### **UNIT-II:** Cognitive Processes-II: Personality and Attitudes – Personality as a continuum – Meaning of personality - Johari Window and Transactional Analysis - Nature and Dimension of Attitudes – Job satisfaction and organizational commitment-Motivational needs and processes- Work-Motivation Approaches Theories of Motivation- Motivation across cultures - Positive organizational behaviour: Optimism – Emotional intelligence – Self-Efficacy. #### **UNIT - III:** Dynamics of OB-I: Communication – types – interactive communication in organizations – barriers to communication and strategies to improve the follow of communication - Decision Making: Participative decision-making techniques – creativity and group decision making. Dynamics of OB –II Stress and Conflict: Meaning and types of stress –Meaning and types of conflict - Effect of stress and intraindividual conflict - strategies to cope with stress and conflict. #### **UNIT - IV:** Dynamics of OB –III Power and Politics: Meaning and types of power – empowerment - Groups Vs. Teams – Nature of groups – dynamics of informal groups – dysfunctions of groups and teams – teams in modern work place. ## UNIT - V: Leading High performance: Job design and Goal setting for High performance- Quality of Work Life-Socio technical Design and High-performance work practices - Behavioural performance management: reinforcement and punishment as principles of Learning –Process of Behavioural modification - Leadership theories - Styles, Activities and skills of Great leaders. - 1. Luthans, Fred: Organizational Behaviour 10/e, McGraw-Hill, 2009 - 2. McShane: Organizational Behaviour, 3e, TMH, 2008 - 3. Nelson: Organizational Behaviour, 3/e, Thomson, 2008. - 4. Newstrom W. John & Davis Keith, Organisational Behaviour-- Human Behaviour at Work, 12/e, TMH, New Delhi, 2009. - 5. Pierce and Gardner: Management and Organisational Behaviour: An Integrated perspective, Thomson, 2009. - 6. Robbins, P. Stephen, Timothy A. Judge: Organisational Behaviour, 12/e, PHI/Pearson, New Delhi, 2009. - 7. Pareek Udai: Behavioural Process at Work: Oxford & IBH, New Delhi, 2009. - 8. Schermerhorn: Organizational Behaviour 9/e, Wiley, 2008. - 9. Hitt: Organizational Behaviour, Wiley, 2008 - 10. Aswathappa: Organisational Behaviour, 7/e, Himalaya, 2009 - 11. Mullins: Management and Organisational Behaviour, Pearson, 2008. - 12. McShane, Glinow: Organisational Behaviour--Essentials, TMH, 2009. - 13. Ivancevich: Organisational Behaviour and Management, 7/e, TMH, 2008. ## **DATA STREAM MINING (Professional Elective – VI)** #### B.Tech. IV Year II Sem. L T P C 3 0 0 3 ## **Prerequisites** 1. A basic knowledge of "Data Mining" ## **Course Objectives:** - 1. The aim of the course is to introduce the fundamentals of Data Stream Mining. - 2. The course gives an overview of Mining Strategies, methods and algorithms for data stream mining. ## **Course Outcomes:** - 1. Understand how to formulate a knowledge extraction problem from data streams. - 2. Ability to apply methods / algorithms to new data stream analysis problems. - 3. Evaluate the results and understand the functioning of the methods studied. - 4. Demonstrate decision tree and adaptive Hoeffding Tree concepts #### UNIT - I MOA Stream Mining, Assumptions, Requirements, Mining Strategies, Change Detection Strategies, MOA Experimental Settings, Previous Evaluation Practices, Evaluation Procedures for Data Streams, Testing Framework, Environments, Data Sources, Generation Speed and Data Size, Evolving Stream Experimental Setting. #### **UNIT - II** Hoeffding Trees, The Hoeffding Bound for Tree Induction, The Basic Algorithm, Memory Management, Numeric Attributes, Batch Setting Approaches, Data Stream Approaches. ## **UNIT - III** Prediction Strategies, Majority Class, Naïve Bayes Leaves, Adaptive Hybrid, Hoeffding Tree Ensembles, Data Stream Setting, Realistic Ensemble Sizes. ## **UNIT - IV** Evolving Data Streams, Algorithms for Mining with Change, A Methodology for Adaptive Stream Mining, Optimal Change Detector and Predictor, Adaptive Sliding Windows, Introduction, Maintaining Updated Windows of Varying Length. ## UNIT - V Adaptive Hoeffding Trees, Introduction, Decision Trees on Sliding Windows, Hoeffding Adaptive Trees, Adaptive Ensemble Methods, New methods of Bagging using trees of different size, New method of bagging using ADWIN, Adaptive Hoeffding Option Trees, Method performance. ## **TEXT BOOK:** DATA STREAM MINING: A Practical Approach by Albert Bifet and Richard Kirkby. - 1. Knowledge discovery from data streams by Gama João. ISBN: 978-1-4398-2611-9. - 2. Machine Learning for Data Streams by Albert Bifet, Ricard Gavalda; MIT Press, 2017. ## WEB SECURITY (Professional Elective – VI) #### B.Tech. IV Year II Sem. L T P C 3 0 0 3 #### **Course Objectives:** - Give an Overview of information security - Give an overview of Access control of relational databases #### Course Outcomes: Students should be able to - Understand the Web architecture and applications - Understand client side and service side programming - Understand how common mistakes can be bypassed and exploit the application - Identify common application vulnerabilities ## UNIT - I The Web Security, The Web Security Problem, Risk Analysis and Best Practices. Cryptography and the Web: Cryptography and Web Security, Working Cryptographic Systems and Protocols, Legal Restrictions on Cryptography, Digital Identification. #### UNIT - II The Web's War on Your Privacy, Privacy-Protecting Techniques, Backups and Antitheft, Web Server Security, Physical Security for Servers, Host Security for Servers, Securing Web Applications. #### **UNIT - III** Database Security: Recent Advances in Access Control, Access Control Models for XML, Database Issues in Trust Management and Trust Negotiation, Security in Data Warehouses and OLAP Systems. ## **UNIT - IV** Security Re-engineering for Databases: Concepts and Techniques, Database Watermarking for Copyright Protection, Trustworthy Records Retention, Damage Quarantine and Recovery in Data Processing Systems, Hippocratic Databases: Current Capabilities and Future Trends. ## **UNIT - V** Privacy in Database Publishing: A Bayesian Perspective, Privacy-enhanced Location-based Access Control, Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment. ## **TEXT BOOKS:** - 1. Web Security, Privacy and Commerce Simson G Arfinkel, Gene Spafford, O'Reilly. - 2. Handbook on Database security applications and trends Michael Gertz, Sushil Jajodia. ## **VIDEO ANALYTICS (Professional Elective – VI)** B.Tech. IV Year II Sem. L T P C 3 0 0 3 **Course Objectives:** To acquire the knowledge of extracting information from surveillance videos, understand the models used for recognition of objects, humans in videos and perform gait analysis. #### **Course Outcomes:** - 1. Understand the basics of video- signals and systems. - 2. Able to estimate motion in a video. - 3. Able to detect the objects and track them. - 4. Recognize activity and analyze behaviour. - 5. Evaluate face recognition technologies. #### UNIT - I INTRODUCTION Multidimensional signals and systems: signals, transforms, systems, sampling theorem. Digital Images
and Video: human visual system and color, digital video, 3D video, digital-video applications, image and video quality. #### **UNIT - II** MOTION ESTIMATION Image formation, motion models, 2D apparent motion estimation, differential methods, matching methods, non-linear optimization methods, transform domain methods, 3D motion and structure estimation. #### **UNIT - III** VIDEO ANALYTICS Introduction- Video Basics - Fundamentals for Video Surveillance- Scene Artifacts- Object Detection and Tracking: Adaptive Background Modelling and Subtraction- Pedestrian Detection and Tracking Vehicle Detection and Tracking- Articulated Human Motion Tracking in Low-Dimensional Latent Spaces. #### **UNIT - IV** BEHAVIORAL ANALYSIS & ACTIVITY RECOGNITION Event Modelling- Behavioral Analysis- Human Activity Recognition-Complex Activity Recognition Activity modelling using 3D shape, Video summarization, shape-based activity models- Suspicious Activity Detection. #### **UNIT - V** HUMAN FACE RECOGNITION & GAIT ANALYSIS Introduction: Overview of Recognition algorithms – Human Recognition using Face: Face Recognition from still images, Face Recognition from video, Evaluation of Face Recognition Technologies- Human Recognition using gait: HMM Framework for Gait Recognition, View Invariant Gait Recognition, Role of Shape and Dynamics in Gait Recognition. #### **TEXT BOOKS:** - 1. Murat Tekalp, "Digital Video Processing", second edition, Pearson, 2015 - 2. Rama Chellappa, Amit K. Roy-Chowdhury, Kevin Zhou. S, "Recognition of Humans and their Activities using Video", Morgan & Claypool Publishers, 2005. - 3. Yunqian Ma, Gang Qian, "Intelligent Video Surveillance: Systems and Technology", CRC Press (Taylor and Francis Group), 2009. - 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011. - 2. Yao Wang, JornOstermann and Ya-Qin Zhang, "Video Processing and Communications", Prentice Hall, 2001. - 3. Thierry Bouwmans, FatihPorikli, Benjamin Höferlin and Antoine Vacavant, "Background Modeling and Foreground Detection for Video Surveillance: Traditional and Recent Approaches, Implementations, Benchmarking and Evaluation", CRC Press, Taylor and Francis Group, 2014. - 4. Md. Atiqur Rahman Ahad, "Computer Vision and Action Recognition-A Guide for Image Processing and Computer Vision Community for Action Understanding", Atlantis Press, 2011. ## **BLOCKCHAIN TECHNOLOGY (Professional Elective – VI)** ## B.Tech. IV Year II Sem. L T P C 3 0 0 3 ## Prerequisites: - 1. Knowledge in security and applied cryptography. - 2. Knowledge in distributed databases. Course Objectives: To Introduce block chain technology and Cryptocurrency. #### **Course Outcomes:** - 1. Learn about research advances related to one of the most popular technological areas today. - 2. Understand Extensibility of Blockchain concepts. - 3. Understand and Analyze Blockchain Science. - 4. Understand Technical challenges, Business model challenges. #### UNIT - I Introduction: Block chain or distributed trust, Protocol, Currency, Cryptocurrency, How a Cryptocurrency works, Crowdfunding. #### **UNIT - II** Extensibility of Blockchain concepts, Digital Identity verification, Block chain Neutrality, Digital art, Blockchain Environment. ## **UNIT - III** Blockchain Science: Gridcoin, Folding coin, Blockchain Genomics, Bitcoin MOOCs. ## **UNIT - IV** Currency, Token, Tokenizing, Campuscoin, Coindrop as a strategy for Public adoption, Currency Multiplicity, Demurrage currency. #### **UNIT - V** Technical challenges, Business model challenges, Scandals and Public perception, Government Regulations. #### **TEXT BOOK:** 1. Melanie Swan, Blockchain Blueprint for Economy, O'reilly. - 1. Building Blockchain Apps, Michael Juntao Yuan, Pearson Education - 2. Daniel Drescher, Blockchain Basics: A Non-Technical Introduction in 25 Steps 1st Edition - 3. Bradley Lakeman, Blockchain Revolution: Understanding the Crypto Economy of the Future. A Non-Technical Guide to the Basics of Cryptocurrency Trading and Investing, ISBN: 1393889158. ## PARALLEL AND DISTRIBUTED COMPUTING (Professional Elective – VI) #### B.Tech. IV Year II Sem. L T P C 3 0 0 3 ## **Course Objectives:** - 1. To learn core ideas behind parallel and distributed computing. - 2. To explore the methodologies adopted for parallel and distributed environments. - 3. To understand the networking aspects of parallel and distributed computing. - 4. To provide an overview of the computational aspects of parallel and distributed computing. - 5. To learn parallel and distributed computing models. #### **Course Outcomes:** - 1. Explore the methodologies adopted for parallel and distributed environments. - 2. Analyze the networking aspects of Distributed and Parallel Computing. - 3. Explore the different performance issues and tasks in parallel and distributed computing. - 4. Tools usage for parallel and distributed computing. - 5. Understanding high performance computing techniques. #### UNIT - I Parallel and Distributed Computing— Introduction- Benefits and Needs- Parallel and Distributed Systems- Programming Environment- Theoretical Foundations - Parallel Algorithms— Introduction-Parallel Models and Algorithms- Sorting - Matrix Multiplication- Convex Hull- Pointer Based Data Structures. #### **UNIT - II** Synchronization- Process Parallel Languages- Architecture of Parallel and Distributed Systems-Consistency and Replication- Security- Parallel Operating Systems. ## **UNIT - III** Management of Resources in Parallel Systems- Tools for Parallel Computing- Parallel Database Systems and Multimedia Object Servers. ## **UNIT - IV** Networking Aspects of Distributed and Parallel Computing- Process- Parallel and Distributed Scientific Computing. ## **UNIT - V** High-Performance Computing in Molecular Sciences- Communication Multimedia Applications for Parallel and Distributed Systems- Distributed File Systems. #### **TEXT BOOKS:** - 1. Jacek Błażewicz, et al., "Handbook on parallel and distributed processing", Springer Science & Business Media, 2013. - 2. Andrew S. Tanenbaum, and Maarten Van Steen, "Distributed Systems: Principles and Paradigms". Prentice-Hall, 2007. - 1. George F.Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed systems: concepts and design", Pearson Education, 2005. - 2. Gregor Kosec and Roman Trobec, "Parallel Scientific Computing: Theory, Algorithms, and Applications of Mesh Based and Meshless Methods", Springer, 2015. # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) COURSE STRUCTURE, I & II YEAR SYLLABUS (R22 Regulations) ## Applicable from AY 2022-23 Batch ## I Year I Semester | S. | Course | Course | | L | T | Р | Credits | |-----|---------|--|-------|----|---|----|---------| | No. | Code | | | | | | | | 1. | MA101BS | Matrices and Calculus | | 3 | 1 | 0 | 4 | | 2. | CH102BS | Engineering Chemistry | | 3 | 1 | 0 | 4 | | 3. | CS103ES | Programming for Problem Solving | | 3 | 0 | 0 | 3 | | 4. | EE104ES | Basic Electrical Engineering | | 2 | 0 | 0 | 2 | | 5. | ME105ES | Computer Aided Engineering Graphics | | 1 | 0 | 4 | 3 | | 6. | CS106ES | Elements of Computer Science & Engineering | | 0 | 0 | 2 | 1 | | 7. | CH107BS | Engineering Chemistry Laboratory | | 0 | 0 | 2 | 1 | | 8. | CS108ES | Programming for Problem Solving Laboratory | | 0 | 0 | 2 | 1 | | 9. | EE109ES | Basic Electrical Engineering Laboratory | | 0 | 0 | 2 | 1 | | | | Induction Program | | | | | | | | | | Total | 12 | 2 | 12 | 20 | ## I Year II Semester | S. | Course | Course | L | Т | Р | Credits | |-----|---------|---|----|---|----|---------| | No. | Code | | | | | | | 1. | MA201BS | Ordinary Differential Equations and Vector Calculus | 3 | 1 | 0 | 4 | | 2. | PH202BS | Applied Physics | 3 | 1 | 0 | 4 | | 3. | ME203ES | Engineering Workshop | 0 | 1 | 3 | 2.5 | | 4. | EN204HS | English for Skill Enhancement | 2 | 0 | 0 | 2 | | 5. | EC205ES | Electronic Devices and Circuits | 2 | 0 | 0 | 2 | | 6. | CS206ES | Python Programming Laboratory | 0 | 1 | 2 | 2 | | 7. | PH207BS | Applied Physics Laboratory | 0 | 0 | 3 | 1.5 | | 8. | EN208HS | English Language and Communication Skills | 0 | 0 | 2 | 1 | | | | Laboratory | | | | | | 9. | CS209ES | IT Workshop | 0 | 0 | 2 | 1 | | 10. | *MC210 | Environmental Science | 3 | 0 | 0 | 0 | | | | Tota | 13 | 4 | 12 | 20 | ## II YEAR I SEMESTER | II IEAR I | SEMESIER | | | | | | |-----------|----------------|--|----|---|----|---------| | S. No. | Course
Code | Course Title | L | Т | Р | Credits | | 1 | | Digital Electronics | 3 | 0 | 0 | 3 | | 2 | | Data Structures | 3 | 0 | 0 | 3 | | 3 | | Computer Oriented Statistical Methods | 3 | 1 | 0 | 4 | | 4 | | Computer Organization and Architecture | 3 | 0 | 0 | 3 | | 5 | | Object Oriented Programming through Java | 3 | 0 | 0 | 3 | | 6 | | Data Structures Lab | 0 | 0 | 3 | 1.5 | | 7 | | Object Oriented Programming through Java Lab | 0 | 0 | 3 | 1.5 | | 8 | | Data visualization- R Programming/ Power BI | 0 | 0 | 2 | 1 | | 9 | *MC | Gender Sensitization Lab | 0 | 0 | 2 | 0 | | | | O Total | 15 | 1 | 10 | 20 | ## **II YEAR II SEMESTER** | S. No. | Course
Code | Course Title | L | Т | Р | Credits | |--------|----------------|--|----|---|----|---------| | 1 | | Discrete Mathematics | 3 | 0 | 0 | 3 | | 2 | | Business Economics & Financial Analysis | 3 | 0 | 0 | 3 | | 3 | | Operating Systems | 3 | 0 | 0 | 3 | | 4 | | Database Management Systems | 3 | 0 | 0 | 3 | | 5 | | Software Engineering | 3 | 0 | 0 | 3 | | 6 | | Operating Systems Lab | 0 | 0 | 2 | 1 | | 7 | | Database Management Systems Lab | 0 | 0 | 2 | 1 | | 8 | | Real-time Research Project/ Societal Related Project | 0 | 0 | 4 | 2 | | 9 | | Node JS/ React JS/ Django | 0 | 0 | 2 | 1 | | 10 | *MC | Constitution of India | 3 | 0 | 0 | 0 | | | | Total | 18 | 0 |
10 | 20 | ## **III YEAR I SEMESTER** | S. No. | Course
Code | Course Title | | L | Т | Р | Credits | |--------|----------------|---|-------|----|---|----|---------| | 1 | | Algorithm Design and Analysis | | 3 | 0 | 0 | 3 | | 2 | | Data Science | | 3 | 1 | 0 | 4 | | 3 | | Computer Networks | | 3 | 0 | 0 | 3 | | 4 | | Professional Elective - I | | 3 | 0 | 0 | 3 | | 5 | | Professional Elective - II | | 3 | 0 | 0 | 3 | | 6 | | R Programming Lab | | 0 | 0 | 2 | 1 | | 7 | | Computer Networks Lab | | 0 | 0 | 2 | 1 | | 8 | | Advanced English Communication Skills Lab | | 0 | 0 | 2 | 1 | | 9 | | ETL-Kafka/Talend | | 0 | 0 | 2 | 1 | | 10 | *MC | Intellectual Property Rights | | 3 | 0 | 0 | 0 | | | | | Total | 18 | 1 | 08 | 20 | ## **III YEAR II SEMESTER** | S. No. | Course
Code | Course Title | L | Т | Р | Credits | |--------|----------------|--|----|---|----|---------| | 1 | | Automata Theory and Compiler Design | 3 | 0 | 0 | 3 | | 2 | | Machine Learning | 3 | 0 | 0 | 3 | | 3 | | Big Data Analytics | 3 | 0 | 0 | 3 | | 4 | | Professional Elective – III | 3 | 0 | 0 | 3 | | 5 | | Open Elective - I | 3 | 0 | 0 | 3 | | 6 | | Machine Learning Lab | 0 | 0 | 2 | 1 | | 7 | | Introduction to Big Data Analytics Lab | 0 | 0 | 2 | 1 | | 8 | | Professional Elective - III Lab | 0 | 0 | 2 | 1 | | 9 | | Industrial Oriented Mini Project/ Summer Internship/ | 0 | 0 | 4 | 2 | | | | Skill Development Course (UI design- Flutter) | | | | | | 10 | *MC | Environmental Science | 3 | 0 | 0 | 0 | | | | Total | 18 | 0 | 10 | 20 | Environmental Science in III Yr II Sem Should be Registered by Lateral Entry Students Only. ## **IV YEAR I SEMESTER** | S. No. | Course
Code | Course Title | L | Т | Р | Credits | |--------|----------------|------------------------------------|----|---|----|---------| | 1 | | Predictive Analytics | 3 | 0 | 0 | 3 | | 2 | | Web and Social Media Analytics | 3 | 0 | 0 | 3 | | 3 | | Professional Elective – IV | 3 | 0 | 0 | 3 | | 4 | | Professional Elective – V | 3 | 0 | 0 | 3 | | 5 | | Open Elective – II | 3 | 0 | 0 | 3 | | 6 | | Web and Social Media Analytics Lab | 0 | 0 | 2 | 1 | | 7 | | Predictive Analytics Lab | 0 | 0 | 2 | 1 | | 8 | | Project Stage – I | 0 | 0 | 6 | 3 | | | | Total Credits | 15 | 0 | 10 | 20 | ## **IV YEAR II SEMESTER** | S. No. | Course
Code | Course Title | L | Т | Р | Credits | |--------|----------------|--------------------------------------|---|---|----|---------| | 1 | | Organizational Behavior | 3 | 0 | 0 | 3 | | 2 | | Professional Elective – VI | 3 | 0 | 0 | 3 | | 3 | | Open Elective – III | 3 | 0 | 0 | 3 | | 4 | | Project Stage – II including Seminar | 0 | 0 | 22 | 11 | | | | Total Credits | 9 | 0 | 22 | 20 | ## *MC - Satisfactory/Unsatisfactory ## **Professional Elective - I** | Data Warehousing and Business Intelligence | |--| | Artificial Intelligence | | Web Programming | | Image Processing | | Computer Graphics | ## **Professional Elective - II** | Spatial and Multimedia Databases | |----------------------------------| | Information Retrieval Systems | | Software Project Management | | DevOps | | Computer Vision and Robotics | ## **Professional Elective - III** | Software Testing Methodologies | |-----------------------------------| | Data Visualization Techniques | | Scripting Languages | | Mobile Application Development | | Cryptography and Network Security | [#] Courses in PE - III and PE - III Lab must be in 1-1 correspondence. ## **Professional Elective - IV** | Quantum Computing | |--------------------------------| | Database Security | | Natural Language Processing | | Information Storage Management | | Internet of Things | ## **Professional Elective - V** | Privacy Preserving in Data Mining | |-----------------------------------| | Cloud Computing | | Data Science Applications | | Mining Massive Datasets | | Exploratory Data Analysis | ## **Professional Elective - VI** | Data Stream Mining | |------------------------------------| | Web Security | | Video Analytics | | Blockchain Technology | | Parallel and Distributed Computing | ## Open Elective - I - 1. Fundamentals of Data Science - 2. R Programming ## Open Elective - II - 1. Data Mining - 2. Data Analytics ## **Open Elective - III** - 1. Introduction to social media mining - 2. Data Visualization using Python ## **MATRICES AND CALCULUS** B.Tech. I Year I Sem. L T P C 3 1 0 4 **Pre-requisites:** Mathematical Knowledge at pre-university level # Course Objectives: To learn - Types of matrices and their properties. - Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations. - Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form - Geometrical approach to the mean value theorems and their application to the mathematical problems - Evaluation of surface areas and volumes of revolutions of curves. - Evaluation of improper integrals using Beta and Gamma functions. - Partial differentiation, concept of total derivative - Finding maxima and minima of function of two and three variables. - Evaluation of multiple integrals and their applications # Course outcomes: After learning the contents of this paper the student must be able to - Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations - Find the Eigenvalues and Eigen vectors - Reduce the quadratic form to canonical form using orthogonal transformations. - Solve the applications on the mean value theorems. - Evaluate the improper integrals using Beta and Gamma functions - Find the extreme values of functions of two variables with/ without constraints. - Evaluate the multiple integrals and apply the concept to find areas, volumes UNIT - I: Matrices 10 L Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method. # UNIT - II: Eigen values and Eigen vectors 10 L 10 L Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation. UNIT - III: Calculus 10 L Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series. Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications. # UNIT - IV: Multivariable Calculus (Partial Differentiation and applications) Definitions of Limit and continuity. Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers. PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chawdaryguda, Korremula (V) thankesar (M), Medchal Dirt. TS-50008/ # **UNIT-V: Multivariable Calculus (Integration)** 8 L Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals. Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals). #### **TEXT BOOKS:** - 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010. - 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2016. - 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. - 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition,Pearson, Reprint, 2002 - 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. - 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi. ## **ENGINEERING CHEMISTRY** B.Tech. I Year I Sem. L T P C # **Course Objectives:** - 1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer. - 2. To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion it's control to protect the structures. - 3. To imbibe the basic concepts of petroleum and its products. - 4. To acquire required knowledge about engineering materials like cement, smart materials and Lubricants. ## **Course Outcomes:** - 1. Students will acquire the basic knowledge of electrochemical procedures related to corrosion and its control - 2. The students are able to understand the basic properties of water and its usage in domestic and industrial purposes. - 3. They can learn the fundamentals and general properties of polymers and other engineering materials. - 4. They can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs. # UNIT - I: Water and its treatment: [8] Introduction to hardness of water – Estimation of hardness of water by complexometric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and break - point chlorination. Defluoridation - Determination of F⁻ ion by ion- selective electrode method. Boiler
troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods - Softening of water by ion- exchange processes. Desalination of water - Reverse osmosis. ## UNIT - II Battery Chemistry & Corrosion [8] Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells. **Corrosion:** Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods. # UNIT - III: Polymeric materials: [8] Definition – Classification of polymers with examples – Types of polymerization – addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene **Plastics:** Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP). Rubbers: Natural rubber and its vulcanization. **Elastomers:** Characteristics –preparation – properties and applications of Buna-S, Butyl and Thiokol rubber. **Conducting polymers:** Characteristics and Classification with examples-mechanism of conduction in trans-polyacetylene and applications of conducting polymers **Biodegradable polymers:** Concept and advantages - Polylactic acid and poly vinyl alcohol and their applications. # **UNIT - IV: Energy Sources: [8]** Introduction, Calorific value of fuel – HCV, LCV- Dulongs formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages. # UNIT - V: Engineering Materials: [8] Cement: Portland cement, its composition, setting and hardening. # Smart materials and their engineering applications Shape memory materials- Poly L- Lactic acid. Thermoresponse materials- Polyacryl amides, Poly vinyl amides **Lubricants:** Classification of lubricants with examples-characteristics of a good lubricants - mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point. #### **TEXT BOOKS:** - 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010 - Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016 - 3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K. Shashikala, Pearson Publications, 2021. - 4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications. - 1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015) - 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011) #### PROGRAMMING FOR PROBLEM SOLVING # B.Tech. I Year I Sem. L T P C 3 0 0 3 # **Course Objectives:** - To learn the fundamentals of computers. - To understand the various steps in program development. - To learn the syntax and semantics of the C programming language. - To learn the usage of structured programming approaches in solving problems. ## Course Outcomes: The student will learn - To write algorithms and to draw flowcharts for solving problems. - To convert the algorithms/flowcharts to C programs. - To code and test a given logic in the C programming language. - To decompose a problem into functions and to develop modular reusable code. - To use arrays, pointers, strings and structures to write C programs. - Searching and sorting problems. # **UNIT - I: Introduction to Programming** Compilers, compiling and executing a program. Representation of Algorithm - Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number Flowchart/Pseudocode with examples, Program design and structured programming **Introduction to C Programming Language:** variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments Bitwise operations: Bitwise AND, OR, XOR and NOT operators Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do- while loops I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr. Command line arguments # **UNIT - II: Arrays, Strings, Structures and Pointers:** Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings Structures: Defining structures, initializing structures, unions, Array of structures Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self referential structures in linked list (no implementation) Enumeration data type # UNIT - III: Preprocessor and File handling in C: Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions. # **UNIT - IV: Function and Dynamic Memory Allocation:** Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types # **UNIT - V: Searching and Sorting:** Basic searching in an array of elements (linear and binary search techniques), Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms), Basic concept of order of complexity through the example programs ## **TEXT BOOKS:** - 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson - 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition) - 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India - 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill - 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB - 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression) - 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education. - 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition - 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill # **BASIC ELECTRICAL ENGINEERING** B.Tech. I Year I Sem. L T P C 2 0 0 2 **Prerequisites**: Mathematics **Course Objectives**: - To understand DC and Single & Three phase AC circuits - To study and understand the different types of DC, AC machines and Transformers. - To import the knowledge of various electrical installations and the concept of power, power factor and its improvement. Course Outcomes: After learning the contents of this paper the student must be able to - Understand and analyze basic Electrical circuits - Study the working principles of Electrical Machines and Transformers - Introduce components of Low Voltage Electrical Installations. | Course
Objectives | | Program Outcomes | | | | | | | | | | | |---|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------| | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | | To understand DC and Single & Three phase AC circuits. | 3 | 2 | 1 | | 2 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | | To study and understand the different types of DC, AC machines and Transformers. | 3 | 2 | 1 | 1 | 3 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | | To import the knowledge of various electrical installations and the concept of power, power factor and its improvement. | 3 | 2 | 0 | | 3 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | | Course
Outcomes | | Program Outcomes | | | | | | | | | | | |--|-----|------------------|-----|-----|-----|-----|---------|-----|-----|------|------|------| | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | Understand and analyse basic Electrical circuits | 3 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | | Study the working principles of Electrical Machines and Transformers | 3 | 2 | 1 | 0 |
3 | 1 | 0 | 1 | 1 | 2 | 1 | 2 | | Introduce components of Low Voltage Electrical Installations. | 3 | 2 | 1 | 1 | 3 | 2 | O Circu | 0 | 1 | 0 | 2 | 2 | ## UNIT-I: **D.C. Circuits:** Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits. #### UNIT-II: **A.C. Circuits:** Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections. ## **UNIT-III:** **Transformers:** Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections. #### UNIT-IV: **Electrical Machines:** Construction and working principle of dc machine, performance characteristics of dc shunt machine. Generation of rotating magnetic field, Construction and working of a three-phase induction motor, Significance of torque-slip characteristics. Single-phase induction motor, Construction and working. Construction and working of synchronous generator. # UNIT-V: **Electrical Installations:** Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup. ## **TEXT BOOKS:** - 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019. - 2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008. - 1. P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019. - 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009 - 3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012. - 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021. - 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011. - 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010. - 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989 ## **COMPUTER AIDED ENGINEERING GRAPHICS** B.Tech. I Year I Sem. L T P C 1 0 4 3 # **Course Objectives:** - To develop the ability of visualization of different objects through technical drawings - To acquire computer drafting skill for communication of concepts, ideas in the design of engineering products Course Outcomes: At the end of the course, the student will be able to: - Apply computer aided drafting tools to create 2D and 3D objects - sketch conics and different types of solids - Appreciate the need of Sectional views of solids and Development of surfaces of solids - Read and interpret engineering drawings - Conversion of orthographic projection into isometric view and vice versa manually and by using computer aided drafting ## UNIT - I: **Introduction to Engineering Graphics:** Principles of Engineering Graphics and their Significance, Scales – Plain & Diagonal, Conic Sections including the Rectangular Hyperbola – General method only. Cycloid, Epicycloid and Hypocycloid, Introduction to Computer aided drafting – views, commands and conics ## UNIT- II: **Orthographic Projections:** Principles of Orthographic Projections – Conventions – Projections of Points and Lines, Projections of Plane regular geometric figures. Auxiliary Planes. Computer aided orthographic projections – points, lines and planes # UNIT - III: Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views, Computer aided projections of solids – sectional views #### UNIT - IV: Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Development of surfaces using computer aided drafting # UNIT - V: **Isometric Projections:** Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice-versa –Conventions. Conversion of orthographic projection into isometric view using computer aided drafting. # **TEXT BOOKS:** - 1. Engineering Drawing N.D. Bhatt / Charotar - 2. Engineering Drawing and graphics Using AutoCAD Third Edition, T. Jeyapoovan, Vikas: S. Chand and company Ltd. # **REFERENCE BOOKS:** - 1. Engineering Drawing, Basant Agrawal and C M Agrawal, Third Edition McGraw Hill - 2. Engineering Graphics and Design, WILEY, Edition 2020 - 3. Engineering Drawing, M. B. Shah, B.C. Rane / Pearson. - 4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford - 5. Computer Aided Engineering Drawing K Balaveera Reddy et al CBS Publishers **Note:** - External examination is conducted in conventional mode and internal evaluation to be done by both conventional as well as using computer aided drafting. ## **ELEMENTS OF COMPUTER SCIENCE AND ENGINEERING** B.Tech. I Year I Sem. L T P C 0 0 2 1 Course Objective: To provide an overview of the subjects of computer science and engineering. # **Course Outcomes:** - 1. Know the working principles of functional units of a basic Computer - 2. Understand program development, the use of data structures and algorithms in problem solving. - 3. Know the need and types of operating system, database systems. - 4. Understand the significance of networks, internet, WWW and cyber security. - 5. Understand Autonomous systems, the application of artificial intelligence. ## UNIT - I **Basics of a Computer** – Hardware, Software, Generations of computers. Hardware - functional units, Components of CPU, Memory – hierarchy, types of memory, Input and output devices. Software – systems software, application software, packages, frameworks, IDEs. ## UNIT - II **Software development** – waterfall model, Agile, Types of computer languages – Programming, markup, scripting Program Development – steps in program development, flowcharts, algorithms, data structures – definition, types of data structures #### UNIT - III **Operating systems:** Functions of operating systems, types of operating systems, Device & Resource management **Database Management Systems**: Data models, RDBMS, SQL, Database Transactions, data centers, cloud services #### **UNIT - IV** **Computer Networks:** Advantages of computer networks, LAN, WAN, MAN, internet, WiFi, sensor networks, vehicular networks, 5G communication. World Wide Web – Basics, role of HTML, CSS, XML, Tools for web designing, Social media, Online social networks. Security - information security, cyber security, cyber laws #### UNIT - V **Autonomous Systems:** IoT, Robotics, Drones, Artificial Intelligence – Learning, Game Development, natural language processing, image and video processing. Cloud Basics # **TEXT BOOK:** 1. Invitation to Computer Science, G. Michael Schneider, Macalester College, Judith L. Gersting University of Hawaii, Hilo, Contributing author: Keith Miller University of Illinois, Springfield. - 1. Fundamentals of Computers, Reema Thareja, Oxford Higher Education, Oxford University Press. - 2. Introduction to computers, Peter Norton, 8th Edition, Tata McGraw Hill. - 3. Computer Fundamentals, Anita Goel, Pearson Education India, 2010. - 4. Elements of computer science, Cengage. ## **ENGINEERING CHEMISTRY LABORATORY** #### B.Tech. I Year I Sem. L T P C 0 0 2 1 **Course Objectives:** The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn: - Estimation of hardness of water to check its suitability for drinking purpose. - Students are able to perform estimations of acids and bases using conductometry, potentiometry and pH metry methods. - Students will learn to prepare polymers such as Bakelite and nylon-6 in the laboratory. - Students will learn skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils. # Course Outcomes: The experiments will make the student gain skills on: - Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions - Able to perform methods such as conductometry, potentiometry and pH metry in order to find out the concentrations or equivalence points of acids and bases. - Students are able to prepare polymers like bakelite and nylon-6. - Estimations saponification value, surface tension and viscosity of lubricant oils. # **List of Experiments:** - **I. Volumetric Analysis:** Estimation of Hardness of water by EDTA Complexometry method. - II. Conductometry: Estimation of the concentration of an acid by Conductometry. - III. Potentiometry: Estimation of the amount of Fe⁺² by Potentiomentry. - IV. pH Metry: Determination of an acid concentration using pH meter. # V. Preparations: - 1. Preparation of Bakelite. - 2. Preparation Nylon 6. # VI. Lubricants: - 1. Estimation of acid value of given lubricant oil. - 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer. VII. Corrosion: Determination of rate of corrosion of mild steel in the presence and absence of inhibitor. ## VIII. Virtual lab experiments - 1. Construction of Fuel cell and its working. - 2. Smart materials for Biomedical applications - 3. Batteries for electrical vehicles. - 4. Functioning of solar cell and its applications. - 1. Lab manual for Engineering chemistry by
B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022) - 2. Vogel's text book of practical organic chemistry 5th edition - 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications. - 4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007). ## PROGRAMMING FOR PROBLEM SOLVING LABORATORY B.Tech. I Year I Sem. L T P C 0 0 2 1 [Note: The programs may be executed using any available Open Source/ Freely available IDE Some of the Tools available are: CodeLite: https://codelite.org/ Code:Blocks: http://www.codeblocks.org/ DevCpp: http://www.bloodshed.net/devcpp.html Eclipse: http://www.eclipse.org This list is not exhaustive and is NOT in any order of preference] # Course Objectives: The students will learn the following: To work with an IDE to create, edit, compile, run and debug programs - To analyze the various steps in program development. - To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc. - To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc. - To Write programs using the Dynamic Memory Allocation concept. - To create, read from and write to text and binary files # Course Outcomes: The candidate is expected to be able to: - formulate the algorithms for simple problems - translate given algorithms to a working and correct program - correct syntax errors as reported by the compilers - identify and correct logical errors encountered during execution - represent and manipulate data with arrays, strings and structures - use pointers of different types - create, read and write to and from simple text and binary files - modularize the code with functions so that they can be reused ## Practice sessions: - a. Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input. - b. Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input. # Simple numeric problems: - a. Write a program for finding the max and min from the three numbers. - b. Write the program for the simple, compound interest. - c. Write a program that declares Class awarded for a given percentage of marks, where mark <40%= Failed, 40% to <60% = Second class, 60% to <70%=First class, >= 70% = Distinction. Read percentage from standard input. - d. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be: - e. $5 \times 1 = 5$ - f. $5 \times 2 = 10$ - g. $5 \times 3 = 15$ - h. Write a program that shows the binary equivalent of a given positive number between 0 to 255. # **Expression Evaluation:** - a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula s = ut+(1/2)at^2 where u and a are the initial velocity in m/sec (= 0) and acceleration in m/sec^2 (= 9.8 m/s^2)). - b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement) - c. Write a program that finds if a given number is a prime number - d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome. - e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence. - f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user. - g. Write a C program to find the roots of a Quadratic equation. - h. Write a C program to calculate the following, where x is a fractional value. - i. $1-x/2 + x^2/4 x^3/6$ - j. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: 1+x+x^2+x^3+.....+x^n. For example: if n is 3 and x is 5, then the program computes 1+5+25+125. # **Arrays, Pointers and Functions:** - a. Write a C program to find the minimum, maximum and average in an array of integers. - b. Write a function to compute mean, variance, Standard Deviation, sorting of n elements in a single dimension array. - c. Write a C program that uses functions to perform the following: - d. Addition of Two Matrices - e. Multiplication of Two Matrices - f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be the same. - g. Write C programs that use both recursive and non-recursive functions - h. To find the factorial of a given integer. - i. To find the GCD (greatest common divisor) of two given integers. - j. To find x^n - k. Write a program for reading elements using a pointer into an array and display the values using the array. - I. Write a program for display values reverse order from an array using a pointer. - m. Write a program through a pointer variable to sum of n elements from an array. ## Files: - a. Write a C program to display the contents of a file to standard output device. - b. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents. - c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments. - d. Write a C program that does the following: - It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function) - Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function) - The program should then read all 10 values and print them back. e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file). # Strings: - a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent. - b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent - c. Write a C program that uses functions to perform the following operations: - d. To insert a sub-string into a given main string from a given position. - e. To delete n Characters from a given position in a given string. - f. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.) - g. Write a C program that displays the position of a character ch in the string S or 1 if S doesn't contain ch. - h. Write a C program to count the lines, words and characters in a given text. #### Miscellaneous: - a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered. - b. Write a C program to construct a pyramid of numbers as follows: | 1 | * | 1 | 1 | * | |-----|-------|-----|---------|-------| | 1 2 | * * | 23 | 22 | * * | | 123 | * * * | 456 | 333 | * * * | | | | | 4 4 4 4 | * * | | | | | | | ## **Sorting and Searching:** - a. Write a C program that uses non recursive function to search for a Key value in a given - b. list of integers using linear search method. - c. Write a C program that uses non recursive function to search for a Key value in a given - d. sorted list of integers using binary search method. - e. Write a C program that implements the Bubble sort method to sort a given list of - f. integers in ascending order. - g. Write a C program that sorts the given array of integers using selection sort in descending order - h. Write a C program that sorts the given array of integers using insertion sort in ascending order - i. Write a C program that sorts a given array of names ## **TEXT BOOKS:** - 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson - 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition) - 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, PHI - 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill - 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB - 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression) - 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education. - 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition - 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill # **BASIC ELECTRICAL ENGINEERING LABORATORY** B.Tech. I Year I Sem. L T P C 0 0 2 1 Prerequisites: Basic Electrical Engineering **Course Objectives:** - To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach. - To study the transient response of various R, L and C circuits using different excitations. - To determine the performance of different types of DC, AC machines and Transformers. Course Outcomes: After learning the contents of this paper the student must be able to - Verify the basic Electrical circuits through different experiments. - Evaluate the performance calculations of Electrical Machines and Transformers through various testing methods. - Analyze the transient responses of R, L and C
circuits for different input conditions. | Course Objectives | Program Outcomes | | | | | | | | | | | | |-----------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | | To measure the | 3 | 2 | 1 | | 2 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | | electrical | | | | | | | | | | | | | | parameters for | | | | | | | | | | | | | | different types of | | | | | | | | | | | | | | DC and AC circuits | | | | | | | | | | | | | | using conventional | | | | | | | | | | | | | | and theorems | | | | | | | | | | | | | | approach | | | | | | | | | | | | | | To study the | 3 | 2 | 1 | 1 | 3 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | | transient response | | | | | | | | | | | | | | of various R, L and | | | | | | | | | | | | | | C circuits using | | | | | | | | | | | | | | different excitations | | | | | | | | | | | | | | To determine the | 3 | 2 | 0 | | 3 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | | performance of | | | | | | | | | | | | | | different types of | | | | | | | | | | | | | | DC, AC machines | | | | | | | | | | | | | | and Transformers | | | | | | | | | | | | | | Course Outcomes | Progr | Program Outcomes | | | | | | | | | | | |---------------------|-------|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------| | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | Verify the basic | 3 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | | Electrical circuits | | | | | | | | | | | | | | through different | | | | | | | | | | | | | | experiments | | | | | | | | | | | | | | Evaluate the | 3 | 2 | 1 | 0 | 3 | 1 | 0 | 1 | 1 | 2 | 1 | 2 | | performance | | | | | | | | | | | | | | calculations of | | | | | | | | | | | | | | Electrical Machines | | | | | | | | | | | | | | and Transformers | | | | | | | | | | | | | | through various | | | | | | | | | | | | | | testing methods | | | | | | 0: | | | | | | | | Analyse the | 3 | 2 | 1 | 1 | 3 | 2 | 0 | 0 | 1 | 0 | 2 | 2 | |--------------------|---|---|---|---|---|---|---|---|---|---|---|---| | transient | | | | | | | | | | | | | | responses of R, L | | | | | | | | | | | | | | and C circuits for | | | | | | | | | | | | | | different input | | | | | | | | | | | | | | conditions | | | | | | | | | | | | | # List of experiments/demonstrations: # **PART- A (compulsory)** - 1. Verification of KVL and KCL - 2. Verification of Thevenin's and Norton's theorem - 3. Transient Response of Series RL and RC circuits for DC excitation - 4. Resonance in series RLC circuit - Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits - Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer - 7. Performance Characteristics of a DC Shunt Motor - 8. Torque-Speed Characteristics of a Three-phase Induction Motor. # PART-B (any two experiments from the given list) - 1. Verification of Superposition theorem. - 2. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star) - 3. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation) - 4. Measurement of Active and Reactive Power in a balanced Three-phase circuit - 5. No-Load Characteristics of a Three-phase Alternator # **TEXT BOOKS:** - 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019 - 2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008. - 1. P. Ramana, M. Suryakalavathi, G.T.Chandrasheker,"Basic Electrical Engineering", S. Chand, 2nd Edition, 2019. - 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009 - 3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012. - 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021. - 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011. - 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010. - 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989. ## ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS B.Tech. I Year II Sem. L T P C 3 1 0 4 Pre-requisites: Mathematical Knowledge at pre-university level # Course Objectives: To learn - Methods of solving the differential equations of first and higher order. - Concept, properties of Laplace transforms - Solving ordinary differential equations using Laplace transforms techniques. - The physical quantities involved in engineering field related to vector valued functions - The basic properties of vector valued functions and their applications to line, surface and volume integrals Course outcomes: After learning the contents of this paper the student must be able to - Identify whether the given differential equation of first order is exact or not - Solve higher differential equation and apply the concept of differential equation to real world problems. - Use the Laplace transforms techniques for solving ODE's. - Evaluate the line, surface and volume integrals and converting them from one to another # UNIT-I: First Order ODE 8 L Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay. ## **UNIT-II: Ordinary Differential Equations of Higher Order** 10 L Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x, $e^{ax}V(x)$ and xV(x), method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation. Applications: Electric Circuits # **UNIT-III: Laplace transforms** 10 L Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method. #### **UNIT-IV: Vector Differentiation** 10 L Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors. # **UNIT-V: Vector Integration** 10 L Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications. # **TEXT BOOKS:** 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016. - 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. - 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002. - 3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi. - 4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. #### **APPLIED PHYSICS** B.Tech. I Year II Sem. L T P C 3 1 0 4 Pre-requisites: 10 + 2 Physics **Course Objectives:** The objectives of this course for the student are to: - 1. Understand the basic principles of quantum physics and band theory of solids. - 2. Understand the underlying mechanism involved in construction and working principles of various semiconductor devices. - 3. Study the fundamental concepts related to the dielectric, magnetic and energy materials. - 4. Identify the importance of nanoscale, quantum confinement and various fabrications techniques. - 5. Study the characteristics of lasers and optical fibres. #### Course Outcomes: At the end of the course the student will be able to: - Understand physical world from fundamental point of view by the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids. - 2. Identify the role of semiconductor devices in science and engineering Applications. - 3. Explore the fundamental properties of dielectric, magnetic materials and energy for their applications. - 4. Appreciate the features and applications of Nanomaterials. - 5. Understand various aspects of Lasers and Optical fiber and their applications in diverse fields. #### **UNIT - I: QUANTUM PHYSICS AND SOLIDS** Quantum Mechanics: Introduction to quantum physics, blackbody radiation – Stefan-Boltzmann's law, Wein's and Rayleigh-Jean's law, Planck's radiation law - photoelectric effect - Davisson and Germer experiment –Heisenberg uncertainty principle - Born interpretation of the wave function – time independent Schrodinger wave equation - particle in one dimensional potential box. Solids: Symmetry in solids, free electron theory (Drude & Lorentz, Sommerfeld) - Fermi-Dirac distribution - Bloch's theorem -Kronig-Penney model – E-K diagram- effective mass of electron-origin of energy bands- classification of solids. # **UNIT - II: SEMICONDUCTORS AND DEVICES** Intrinsic and extrinsic semiconductors – Hall effect - direct and indirect band gap semiconductors - construction, principle of operation and characteristics of P-N Junction diode, Zener diode and bipolar junction transistor (BJT)–LED, PIN diode, avalanche photo diode (APD) and solar cells, their structure, materials, working principle and characteristics. # **UNIT - III: DIELECTRIC, MAGNETIC AND ENERGY MATERIALS** Dielectric
Materials: Basic definitions- types of polarizations (qualitative) - ferroelectric, piezoelectric, and pyroelectric materials – applications – liquid crystal displays (LCD) and crystal oscillators. Magnetic Materials: Hysteresis - soft and hard magnetic materials - magnetostriction, magnetoresistance - applications - bubble memory devices, magnetic field sensors and multiferroics. Energy Materials: Conductivity of liquid and solid electrolytes- superionic conductors - materials and electrolytes for super capacitors - rechargeable ion batteries, solid fuel cells. ## **UNIT - IV: NANOTECHNOLOGY** Nanoscale, quantum confinement, surface to volume ratio, bottom-up fabrication: sol-gel, precipitation, combustion methods – top-down fabrication: ball milling - physical vapor deposition (PVD) - chemical vapor deposition (CVD) - characterization techniques - XRD, SEM &TEM - applications of nanomaterials. Principal PRINCETON INSTITUTE OF ENGINEERING 8 TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula IVI Charlesar IMI, Medchal Dist. T.S.500087 ## **UNIT - V: LASER AND FIBER OPTICS** Lasers: Laser beam characteristics-three quantum processes-Einstein coefficients and their relationslasing action - pumping methods- ruby laser, He-Ne laser, CO₂ laser, Argon ion Laser, Nd:YAG lasersemiconductor laser-applications of laser. Fiber Optics: Introduction to optical fiber- advantages of optical Fibers - total internal reflection-construction of optical fiber - acceptance angle - numerical aperture- classification of optical fibers-losses in optical fiber - optical fiber for communication system - applications. # **TEXT BOOKS:** - 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"-S. Chand Publications, 11th Edition 2019. - 2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019 - 3. Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, Mc Graw Hill, 4thEdition,2021. - 4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition,2022. - 5. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1st Edition, 2021. - 1. Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012. - 2. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons,11th Edition, 2018. - 3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019. - 4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019. - 5. A.K. Bhandhopadhya Nano Materials, New Age International, 1st Edition, 2007. - 6. Energy Materials a Short Introduction to Functional Materials for Energy Conversion and Storage Aliaksandr S. Bandarenka, CRC Press Taylor & Francis Group - 7. Energy Materials, Taylor & Francis Group, 1st Edition, 2022. ## **ENGINEERING WORKSHOP** B.Tech. I Year II Sem. L T P C 0 1 3 2.5 Pre-requisites: Practical skill # **Course Objectives:** - To Study of different hand operated power tools, uses and their demonstration. - To gain a good basic working knowledge required for the production of various engineering products. - To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field. - To develop a right attitude, team working, precision and safety at work place. - It explains the construction, function, use and application of different working tools, equipment and machines. - · To study commonly used carpentry joints. - To have practical exposure to various welding and joining processes. - Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. # Course Outcomes: At the end of the course, the student will be able to: - Study and practice on machine tools and their operations - Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding. - Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. - Apply basic electrical engineering knowledge for house wiring practice. ## 1. TRADES FOR EXERCISES: # At least two exercises from each trade: - I. Carpentry (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint) - II. Fitting (V-Fit, Dovetail Fit & Semi-circular fit) - III. Tin-Smithy (Square Tin, Rectangular Tray & Conical Funnel) - IV. Foundry (Preparation of Green Sand Mould using Single Piece and Split Pattern) - V. Welding Practice (Arc Welding & Gas Welding) - VI. House-wiring (Parallel & Series, Two-way Switch and Tube Light) - VII. Black Smithy (Round to Square, Fan Hook and S-Hook) # 2. TRADES FOR DEMONSTRATION & EXPOSURE: Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working # **TEXT BOOKS:** - 1. Workshop Practice /B. L. Juneja / Cengage - 2. Workshop Manual / K. Venugopal / Anuradha. - 1. Work shop Manual P. Kannaiah/ K.L. Narayana/ Scitech - 2. Workshop Manual / Venkat Reddy/ BSP #### **ENGLISH FOR SKILL ENHANCEMENT** B.Tech. I Year II Sem. L T P C 2 0 0 2 Course Objectives: This course will enable the students to: - 1. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills. - 2. Develop study skills and communication skills in various professional situations. - 3. Equip students to study engineering subjects more effectively and critically using the theoretical and practical components of the syllabus. # Course Outcomes: Students will be able to: - 1. Understand the importance of vocabulary and sentence structures. - 2. Choose appropriate vocabulary and sentence structures for their oral and written communication. - 3. Demonstrate their understanding of the rules of functional grammar. - 4. Develop comprehension skills from the known and unknown passages. - 5. Take an active part in drafting paragraphs, letters, essays, abstracts, précis and reports in various contexts. - 6. Acquire basic proficiency in reading and writing modules of English. #### UNIT - I Chapter entitled '*Toasted English*' by R.K.Narayan from "*English: Language, Context and Culture*" published by Orient BlackSwan, Hyderabad. **Vocabulary**: The Concept of Word Formation -The Use of Prefixes and Suffixes - Acquaintance with Prefixes and Suffixes from Foreign Languages to form Derivatives - Synonyms and Antonyms **Grammar:** Identifying Common Errors in Writing with Reference to Articles and Prepositions. **Reading:** Reading and Its Importance- Techniques for Effective Reading. Writing: Sentence Structures -Use of Phrases and Clauses in Sentences-Importance of Proper $\label{lem:punctuation-Techniques} Punctuation-Techniques for Writing precisely-Paragraph Writing-Types, Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of Structures and Features and$ Paragraphs in Documents. # **UNIT - II** Chapter entitled 'Appro JRD' by Sudha Murthy from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad. **Vocabulary:** Words Often Misspelt - Homophones, Homonyms and Homographs **Grammar:** Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement. **Reading:** Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice Writing: Nature and Style of Writing- Defining /Describing People, Objects, Places and Events - Classifying- Providing Examples or Evidence. # **UNIT - III** Chapter entitled 'Lessons from Online Learning' by F.Haider Alvi, Deborah Hurst et al from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad. **Vocabulary**: Words Often Confused - Words from Foreign Languages and their Use in English. **Grammar:** Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses. **Reading:** Sub-Skills of Reading – Intensive Reading and Extensive Reading – Exercises for Practice. Writing: Format of a Formal Letter-Writing Formal Letters E.g., Letter of Complaint, Letter of Requisition, Email Etiquette, Job Application with CV/Resume. #### **UNIT - IV** Chapter entitled 'Art and Literature' by Abdul Kalam from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad. Vocabulary: Standard Abbreviations in English **Grammar:** Redundancies and Clichés in Oral and Written Communication. **Reading**: Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for Practice Writing: Writing Practices- Essay Writing-Writing Introduction and Conclusion -Précis Writing. ## **UNIT - V** Chapter entitled 'Go, Kiss the World' by Subroto Bagchi from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad. Vocabulary: Technical Vocabulary and their Usage **Grammar:** Common Errors in English (Covering all the other aspects of grammar which were not covered in the previous units) **Reading:** Reading Comprehension-Exercises for Practice Writing: Technical Reports- Introduction – Characteristics of a Report – Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Report. Note: Listening and Speaking Skills which are given under Unit-6 in AICTE Model Curriculum are covered in the syllabus of ELCS Lab Course. - Note: 1. As the syllabus of English given in AICTE Model Curriculum-2018 for B.Tech First Year is Open-ended, besides following the prescribed textbook, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning in the class. - Note: 2. Based on the recommendations of NEP2020, teachers are requested to be flexible to adopt Blended Learning in dealing with the course contents . They are advised to
teach 40 percent of each topic from the syllabus in blended mode. # **TEXT BOOK:** 1. "English: Language, Context and Culture" by Orient BlackSwan Pvt. Ltd, Hyderabad. 2022. Print. - 1. Effective Academic Writing by Liss and Davis (OUP) - 2. Richards, Jack C. (2022) Interchange Series. Introduction, 1,2,3. Cambridge University Press - 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan. - 4. Chaudhuri, Santanu Sinha. (2018). Learn English: A Fun Book of Functional Language, Grammar and Vocabulary. (2nd ed.,). Sage Publications India Pvt. Ltd. - 5. (2019). Technical Communication. Wiley India Pvt. Ltd. - 6. Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students. Mc Graw-Hill Education India Pvt. Ltd. - 7. Swan, Michael. (2016). Practical English Usage. Oxford University Press. Fourth Edition. ## **ELECTRONIC DEVICES AND CIRCUITS** B.Tech. I Year II Sem. L T P C 2 0 0 2 # **Course Objectives:** - 1. To introduce components such as diodes, BJTs and FETs. - 2. To know the applications of devices. - 3. To know the switching characteristics of devices. Course Outcomes: Upon completion of the Course, the students will be able to: - 1. Acquire the knowledge of various electronic devices and their use on real life. - 2. Know the applications of various devices. - 3. Acquire the knowledge about the role of special purpose devices and their applications. | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 1 | 2 | - | - | 1 | 1 | - | - | - | - | 1 | | CO2 | 3 | 2 | 3 | - | - | 2 | 1 | - | - | - | - | 1 | | CO3 | 3 | 3 | 3 | - | - | 2 | 1 | - | - | - | - | 1 | #### LINIT - I **Diodes:** Diode - Static and Dynamic resistances, Equivalent circuit, Diffusion and Transition Capacitances, V-I Characteristics, Diode as a switch- switching times. #### UNIT - II **Diode Applications:** Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers with Capacitive and Inductive Filters, Clippers-Clipping at two independent levels, Clamper-Clamping Circuit Theorem, Clamping Operation, Types of Clampers. # **UNIT - III** **Bipolar Junction Transistor (BJT):** Principle of Operation, Common Emitter, Common Base and Common Collector Configurations, Transistor as a switch, switching times, # **UNIT - IV** **Junction Field Effect Transistor (FET):** Construction, Principle of Operation, Pinch-Off Voltage, Volt-Ampere Characteristic, Comparison of BJT and FET, FET as Voltage Variable Resistor, MOSFET, MOSTET as a capacitor. ## UNIT - V **Special Purpose Devices:** Zener Diode - Characteristics, Zener diode as Voltage Regulator, Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode, Photo diode, Solar cell, LED, Schottky diode. #### **TEXT BOOKS:** - 1. Jacob Millman Electronic Devices and Circuits, McGraw Hill Education - 2. Robert L. Boylestead, Louis Nashelsky- Electronic Devices and Circuits theory, 11th Edition, 2009, Pearson. - 1. Horowitz -Electronic Devices and Circuits, David A. Bell 5th Edition, Oxford. - 2. Chinmoy Saha, Arindam Halder, Debaati Ganguly Basic Electronics-Principles and Applications, Cambridge, 2018. ## **PYTHON PROGRAMMING LABORATORY** # B.Tech. I Year II Sem. L T P C 0 1 2 2 # **Course Objectives:** - To install and run the Python interpreter - To learn control structures. - To Understand Lists, Dictionaries in python - To Handle Strings and Files in Python Course Outcomes: After completion of the course, the student should be able to - Develop the application specific codes using python. - Understand Strings, Lists, Tuples and Dictionaries in Python - Verify programs using modular approach, file I/O, Python standard library - Implement Digital Systems using Python Note: The lab experiments will be like the following experiment examples ## Week -1: - 1. i) Use a web browser to go to the Python website http://python.org. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation. - ii) Start the Python interpreter and type help() to start the online help utility. - 2. Start a Python interpreter and use it as a Calculator. 3. - i) Write a program to calculate compound interest when principal, rate and number of periods are given. - ii) Given coordinates (x1, y1), (x2, y2) find the distance between two points - 4. Read name, address, email and phone number of a person through keyboard and print the details. # Week - 2: - 1. Print the below triangle using for loop. - 5 - 44 - 333 - 2222 - 11111 - 2. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder) - 3. Python Program to Print the Fibonacci sequence using while loop - 4. Python program to print all prime numbers in a given interval (use break) # Week - 3: - 1. i) Write a program to convert a list and tuple into arrays. - ii) Write a program to find common values between two arrays. - 2. Write a function called gcd that takes parameters a and b and returns their greatest common divisor. - 3. Write a function called palindrome that takes a string argument and returnsTrue if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string. #### Week - 4: - 1. Write a function called is_sorted that takes a list as a parameter and returns True if the list is sorted in ascending order and False otherwise. - 2. Write a function called has_duplicates that takes a list and returns True if there is any element that appears more than once. It should not modify the original list. - i). Write a function called remove_duplicates that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order. - ii). The wordlist I provided, words.txt, doesn't contain single letter words. So you might want to add "I", "a", and the empty string. - iii). Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys. - 3. i) Add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e' - ii) Remove the given word in all the places in a string? - iii) Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function? - 4. Writes a recursive function that generates all binary strings of n-bit length #### Week - 5: - 1. i) Write a python program that defines a matrix and prints - ii) Write a python program to perform addition of two square matrices - iii) Write a python program to perform multiplication of two square matrices - 2. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions. - 3. Use the structure of exception handling all general purpose exceptions. #### Week-6: - 1. a. Write a function called draw_rectangle that takes a Canvas and a Rectangle as arguments and draws a representation of the Rectangle on the Canvas. - b. Add an attribute named color to your Rectangle objects and modify draw_rectangle so that it uses the color attribute as the fill color. - c. Write a function called draw_point that takes a Canvas and a Point as arguments and draws a representation of the Point on the Canvas. - d. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas. - 2. Write a Python program to demonstrate the usage of Method Resolution Order (MRO) in multiple levels of Inheritances. - 3. Write a python code to read a phone number and email-id from the user and validate it for correctness. #### Week-7 - 1. Write a Python code to merge two given file contents into a third file. - 2. Write a Python code to open a given file and construct a function to check for given words present in it and display on found. - 3. Write a Python code to Read text from a text file, find the word with most number of occurrences - 4. Write a function that reads a file *file1* and displays the number of words, number of vowels, blank spaces, lower case letters and uppercase letters. # Week - 8: - 1. Import numpy, Plotpy and Scipy and explore their functionalities. - 2. a) Install NumPy package with pip and explore it. - 3. Write a program to implement Digital Logic Gates AND, OR, NOT, EX-OR - 4. Write a program to implement Half Adder, Full Adder, and Parallel Adder - 5. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset. # **TEXT BOOKS:** - 1. Supercharged Python: Take your code to the next level, Overland - 2. Learning Python, Mark Lutz, O'reilly - 1. Python for Data Science, Dr. Mohd. Abdul Hameed, Wiley Publications 1st Ed. 2021. - 2. Python Programming: A Modern Approach, Vamsi Kurama, Pearson - 3. Python Programming A Modular Approach with Graphics, Database, Mobile, and Web Applications, Sheetal Taneja, Naveen Kumar, Pearson - 4. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition - 5. Think Python, Allen Downey, Green Tea Press - 6. Core Python Programming, W. Chun, Pearson - 7. Introduction to Python, Kenneth A. Lambert, Cengage ## **APPLIED PHYSICS LABORATORY** B.Tech. I Year II Sem. L T P C 0 0 3 1.5 # Course Objectives: The objectives of this course for the student to - 1. Capable of handling instruments related to the Hall effect and photoelectric effect experiments and their measurements. - Understand the characteristics of various devices such as PN
junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fiber and measurement of energy gap and resistivity of semiconductor materials. - 3. Able to measure the characteristics of dielectric constant of a given material. - 4. Study the behavior of B-H curve of ferromagnetic materials. - 5. Understanding the method of least squares fitting. # Course Outcomes: The students will be able to: - 1. Know the determination of the Planck's constant using Photo electric effect and identify the material whether it is n-type or p-type by Hall experiment. - 2. Appreciate quantum physics in semiconductor devices and optoelectronics. - 3. Gain the knowledge of applications of dielectric constant. - 4. Understand the variation of magnetic field and behavior of hysteresis curve. - 5. Carried out data analysis. ## **LIST OF EXPERIMENTS:** - 1. Determination of work function and Planck's constant using photoelectric effect. - 2. Determination of Hall co-efficient and carrier concentration of a given semiconductor. - 3. Characteristics of series and parallel LCR circuits. - 4. V-I characteristics of a p-n junction diode and Zener diode - 5. Input and output characteristics of BJT (CE, CB & CC configurations) - 6. a) V-I and L-I characteristics of light emitting diode (LED) - b) V-I Characteristics of solar cell - 7. Determination of Energy gap of a semiconductor. - 8. Determination of the resistivity of semiconductor by two probe method. - 9. Study B-H curve of a magnetic material. - 10. Determination of dielectric constant of a given material - 11. a) Determination of the beam divergence of the given LASER beam - b) Determination of Acceptance Angle and Numerical Apertureof an optical fiber. - 12. Understanding the method of least squares torsional pendulum as an example. Note: Any 8 experiments are to be performed. # **REFERENCE BOOK:** 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017. ## **ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY** B.Tech. I Year II Sem. L T P C 0 0 2 1 The English Language and Communication Skills (ELCS) Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts. # **Course Objectives:** - ✓ To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning - ✓ To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm - ✓ To bring about a consistent accent and intelligibility in students' pronunciation of English by providing an opportunity for practice in speaking - ✓ To improve the fluency of students in spoken English and neutralize the impact of dialects. - ✓ To train students to use language appropriately for public speaking, group discussions and interviews # **Course Outcomes:** Students will be able to: - ✓ Understand the nuances of English language through audio- visual experience and group activities - ✓ Neutralise their accent for intelligibility - ✓ Speak with clarity and confidence which in turn enhances their employability skills # Syllabus: English Language and Communication Skills Lab (ELCS) shall have two parts: - a. Computer Assisted Language Learning (CALL) Lab - b. Interactive Communication Skills (ICS) Lab # **Listening Skills:** # Objectives - 1. To enable students develop their listening skills so that they may appreciate the role in the LSRW skills approach to language and improve their pronunciation - 2. To equip students with necessary training in listening, so that they can comprehend the speech of people of different backgrounds and regions Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences. - Listening for general content - Listening to fill up information - · Intensive listening - Listening for specific information ## **Speaking Skills:** ## Objectives - 1. To involve students in speaking activities in various contexts - 2. To enable students express themselves fluently and appropriately in social and professional contexts - Oral practice - Describing objects/situations/people - Role play Individual/Group activities - Just A Minute (JAM) Sessions The following course content is prescribed for the English Language and Communication Skills Lab. #### Exercise - I #### CALL Lab: *Understand:* Listening Skill- Its importance – Purpose- Process- Types- Barriers- Effective Listening. *Practice*: Introduction to Phonetics – Speech Sounds – Vowels and Consonants – Minimal Pairs-Consonant Clusters- Past Tense Marker and Plural Marker- *Testing Exercises* #### ICS Lab: *Understand:* Spoken vs. Written language- Formal and Informal English. *Practice:* Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others. #### Exercise - II #### CALL Lab: *Understand:* Structure of Syllables – Word Stress– Weak Forms and Strong Forms – Stress pattern in sentences – Intonation. Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Stress pattern in sentences – Intonation - Testing Exercises #### ICS Lab: Understand: Features of Good Conversation - Strategies for Effective Communication. *Practice:* Situational Dialogues – Role Play- Expressions in Various Situations – Making Requests and Seeking Permissions - Telephone Etiquette. ## **Exercise - III** #### **CALL Lab:** Understand: Errors in Pronunciation-Neutralising Mother Tongue Interference (MTI). *Practice:* Common Indian Variants in Pronunciation – Differences between British and American Pronunciation - *Testing Exercises* #### ICS Lab: Understand: Descriptions- Narrations- Giving Directions and Guidelines - Blog Writing Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions. # Exercise - IV # **CALL Lab**: Understand: Listening for General Details. Practice: Listening Comprehension Tests - Testing Exercises ## ICS Lab: *Understand:* Public Speaking – Exposure to Structured Talks - Non-verbal Communication-Presentation Skills. Practice: Making a Short Speech – Extempore- Making a Presentation. # Exercise - V # **CALL Lab:** Understand: Listening for Specific Details. Practice: Listening Comprehension Tests - Testing Exercises ICS Lab: Understand: Group Discussion Practice: Group Discussion Minimum Requirement of infrastructural facilities for ELCS Lab: PRINCETON INSTITUTE OF ENGINEERING 8 TECHNOLOGY FOR WOMEN Chowdarygida, Korremula (V) Ohathesar (M), Medchal DHI, T 5-50008/ # 1. Computer Assisted Language Learning (CALL) Lab: The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students. # System Requirement (Hardware component): Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications: - i) Computers with Suitable Configuration - ii) High Fidelity Headphones # 2. Interactive Communication Skills (ICS) Lab: **The Interactive Communication Skills Lab:** A Spacious room with movable chairs and audiovisual aids with a Public Address System, a T. V. or LCD, a digital stereo –audio & video system and camcorder etc. # Source of Material (Master Copy): Exercises in Spoken English. Part 1,2,3. CIEFL and Oxford University Press **Note:** Teachers are requested to make use of the master copy and get it tailor-made to suit the contents of the syllabus. # **Suggested Software:** - Cambridge Advanced Learners' English Dictionary with CD. - Grammar Made Easy by Darling Kindersley. - Punctuation Made Easy by Darling Kindersley. - Oxford Advanced Learner's Compass, 10th Edition. - English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge. - English Pronunciation in Use (Elementary, Intermediate, Advanced) Cambridge University Press. - English Vocabulary in Use (Elementary, Intermediate, Advanced) Cambridge University Press. - TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS). - Digital All - Orell Digital Language Lab (Licensed Version) - 1. (2022). English Language Communication Skills Lab Manual cum Workbook. Cengage Learning India Pvt. Ltd. - 2. Shobha, KN & Rayen, J. Lourdes. (2019). *Communicative English A workbook*. Cambridge University Press - 3. Kumar, Sanjay & Lata, Pushp. (2019). *Communication Skills: A Workbook.* Oxford University Press - 4. Board of Editors. (2016). *ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities*. Orient Black Swan Pvt. Ltd. - 5. Mishra, Veerendra et al. (2020). *English Language Skills: A Practical Approach.* Cambridge University Press. #### IT WORKSHOP B.Tech. I Year II Sem. L T P C 0 0 2 1 **Course Objectives:** The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, PowerPoint and Publisher. # **Course Outcomes:** - Perform Hardware troubleshooting - Understand Hardware components and inter dependencies - Safeguard computer systems from viruses/worms - Document/ Presentation preparation - Perform calculations using spreadsheets ## **PC Hardware** **Task 1:** Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor. **Task 2:** Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which
shows the process of assembling a PC. A video would be given as part of the course content. **Task 3:** Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva. **Task 4:** Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva #### **Internet & World Wide Web** **Task1**: **Orientation & Connectivity Boot Camp:** Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN. **Task 2: Web Browsers, Surfing the Web:** Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured. **Task 3**: **Search Engines & Netiquette:** Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student. **Task 4: Cyber Hygiene:** Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms. # LaTeX and WORD **Task 1 – Word Orientation**: The mentor needs to give an overview of LaTeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of LaTeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word. **Task 2: Using LaTeX and Word** to create a project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word. **Task 3: Creating project** abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes. **Task 4: Creating a Newsletter**: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word. #### **Excel** **Excel Orientation:** The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources. **Task 1: Creating a Scheduler -** Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text **Task 2 : Calculating GPA** - .Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP **Task 3:** Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting # **Powerpoint** **Task 1:** Students will be working on basic power point utilities and tools which help them create basic powerpoint presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint. **Task 2:** Interactive presentations - Hyperlinks, Inserting -Images, Clip Art, Audio, Video, Objects, Tables and Charts. **Task 3:** Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides. # **REFERENCE BOOKS:** - 1. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech - 2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, WILEY Dreamtech - 3. Introduction to Information Technology, ITL Education Solutions limited, *Pearson Education*. - 4. PC Hardware A Handbook Kate J. Chase *PHI* (Microsoft) - 5. LaTeX Companion Leslie Lamport, PHI/Pearson. - 6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. CISCO Press, Pearson Education. - IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan CISCO Press, Pearson Education. PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Chathesar [M], Medchal Dist. T.S. 50008/ ## *MC210: ENVIRONMENTAL SCIENCE B.Tech. I Year II Sem. L T P C 3 0 0 0 # **Course Objectives:** - Understanding the importance of ecological balance for sustainable development. - Understanding the impacts of developmental activities and mitigation measures. - Understanding the environmental policies and regulations #### **Course Outcomes:** Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development #### UNIT - I **Ecosystems:** Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits. ## **UNIT - II** **Natural Resources: Classification of Resources:** Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies. # **UNIT - III** **Biodiversity and Biotic Resources:** Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act. # **UNIT - IV** Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary. Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts: Climate** change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-Gol Initiatives. ## **UNIT - V** **Environmental Policy, Legislation & EIA:** Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socioeconomical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future**: Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style. ## **TEXT BOOKS:** - 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission. - 2 Environmental Studies by R. Rajagopalan, Oxford University Press. - 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi. - 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd. - 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition. - 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers. - 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications. - 6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications. ## **DIGITAL ELECTRONICS** B.Tech. II Year I Sem. L T P C 3 0 0 3 **Course Objectives:** This course aims at through understanding of binary number system, logic gates, combination logic and synchronous and asynchronous logic. ## UNIT - I: **BOOLEAN ALGEBRA AND LOGIC GATES:** Digital Systems, Binary Numbers, Number base conversions, Octal and Hexadecimal Numbers, complements, Signed
binary numbers, Binary codes, Binary Storage and Registers, Binary logic. Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and properties of Boolean algebra, Boolean functions, canonical and standard forms, other logic operations, Digital logic gates. ## UNIT - II: **GATE – LEVEL MINIMIZATION:** The map method, Four-variable map, Five-Variable map, product of sums simplification Don't-care conditions, NAND and NOR implementation other Two-level implementations, Exclusive – Or function. ## UNIT - III: **COMBINATIONAL LOGIC:** Combinational Circuits, Analysis procedure Design procedure, Binary Adder-Subtractor Decimal Adder, Binary multiplier, magnitude comparator, Decoders, Encoders, Multiplexers, HDL for combinational circuits. #### UNIT - IV: **SEQUENTIAL LOGIC:** Sequential circuits, latches, Flip-Flops Analysis of clocked sequential circuits, state Reduction and Assignment, Design Procedure. Registers, shift Registers, Ripple counters, synchronous counters, other counters. #### **UNIT - V** **MEMORIES AND ASYNCHRONOUS SEQUENTIAL LOGIC:** Introduction, Random-Access Memory, Memory Decoding, Error Detection and correction Read-only memory, Programmable logic Array programmable Array logic, Sequential Programmable Devices. Introduction, Analysis Procedure, Circuits with Latches, Design Procedure, Reduction of state and Flow Tables, Race-Free state Assignment Hazards, Design Example. #### **TEXT BOOKS:** - 1. Digital Design Third Edition, M. Morris Mano, Pearson Education/PHI. - 2. Digital Principles and Applications Albert Paul Malvino Donald P. Leach TATA McGraw Hill Edition - 3. Fundamentals of Logic Design, Roth, 5th Edition, Thomson. - 1. Switching and Finite Automata Theory by Zvi. Kohavi, Tata McGraw Hill. - 2. Switching and Logic Design, C.V.S. Rao, Pearson Education - 3. Digital Principles and Design Donald D.Givone, Tata McGraw Hill, Edition. - 4. Fundamentals of Digital Logic and Microcomputer Design, 5TH Edition, M. Rafiquzzaman John Wiley. # **DATA STRUCTURES** B.Tech. II Year I Sem. L T P C 3 0 0 3 **Prerequisites:** Programming for Problem Solving # **Course Objectives** - Exploring basic data structures such as stacks and queues. - Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs. - Introduces sorting and pattern matching algorithms #### **Course Outcomes** - Ability to select the data structures that efficiently model the information in a problem. - Ability to assess efficiency trade-offs among different data structure implementations or combinations. - Implement and know the application of algorithms for sorting and pattern matching. - Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees. # UNIT - I Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks- Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations. #### **UNIT - II** Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching. Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing. #### **UNIT - III** Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees. #### **UNIT - IV** Graphs: Graph Implementation Methods. Graph Traversal Methods. Sorting: Quick Sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort. # **UNIT - V** Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries. # **TEXT BOOKS:** - 1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press. - 2. Data Structures using C A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education. # **REFERENCE BOOK:** 1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning. PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesor (M), Medichal Dirit, T.S.50008/ # **COMPUTER ORIENTED STATISTICAL METHODS** B.Tech. II Year I Sem. L T P C 3 1 0 4 **Pre-requisites:** Mathematics courses of first year of study. # Course Objectives: To learn - The theory of Probability, Probability distributions of single and multiple random variables - The sampling theory, testing of hypothesis and making statistical inferences - · Stochastic process and Markov chains. Course outcomes: After learning the contents of this paper the student must be able to - Apply the concepts of probability and distributions to case studies. - Formulate and solve problems involving random variables and apply statistical methods for analyzing experimental data. - Apply concept of estimation and testing of hypothesis to case studies. - Correlate the concepts of one unit to the concepts in other units. # UNIT - I: Probability 10 L Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Baye's Rule, **Random Variables and Probability Distributions:** Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions. # **UNIT - II: Expectation and discrete distributions** 10 L Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev's Theorem. **Discrete Probability Distributions:** Binomial Distribution, Poisson distribution. # **UNIT - III: Continuous and Sampling Distributions** 10 L Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial Distributions. **Fundamental Sampling Distributions:** Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, t - Distribution, F-Distribution. # **UNIT - IV: Sample Estimation & Tests of Hypotheses** 10 L Introduction, Statistical Inference, Classical Methods of Estimation, Single Sample: Estimating the mean, standard error of a point estimate, prediction interval. Two sample: Estimating the difference between two means, Single sample: Estimating a proportion, Two samples: Estimating the difference between two proportions, Two samples: Estimating the ratio of two variances. Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Single sample: Tests concerning a single mean, Two samples: tests on two means, One sample: test on a single proportion. Two samples: tests on two proportions, Two- sample tests concerning variances. # **UNIT-V: Stochastic Processes and Markov Chains** 8L Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, n-step transition probabilities, Markov chain, Steady state condition, Markov analysis. # **TEXT BOOKS:** 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics For Engineers & Scientists, 9th Ed. Pearson Publishers - 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications. - 3. S.D.Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi. - 1. T.T. Soong, Fundamentals of Probability and Statistics For Engineers, John Wiley & Sons, Ltd, 2004. - 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, academic press. - 3. Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations. # **COMPUTER ORGANIZATION AND ARCHITECTURE** B.Tech. II Year I Sem. L T P C 3 0 0 3 Co-requisite: A Course on "Digital Electronics". # **Course Objectives** - The purpose of the course is to introduce principles of computer organization and the basic architectural concepts. - It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations. - Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors #### **Course Outcomes** - Understand the basics of instruction sets and their impact on processor design. - Demonstrate an understanding of the design of the functional units of a digital computer system. - Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory. - Design a pipeline for consistent execution of instructions with minimum hazards. - Recognize and manipulate representations of numbers stored in digital computers # UNIT - I Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture. Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit. Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt. # **UNIT - II** Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.
Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control. # **UNIT - III** Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation. Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations. #### **UNIT - IV** Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access. Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory. #### **UNIT - V** Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics. Principal PRINCETON INSTITUTE OF ENGINEERING & TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesor (MI), Medchal Div., T.S.-50008/ Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor. Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence. # **TEXT BOOK:** 1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI. - 1. Computer Organization Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGraw Hill. - 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI. - 3. Structured Computer Organization Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson. # **OBJECT ORIENTED PROGRAMMING THROUGH JAVA** B.Tech. II Year I Sem. L T P C 3 0 0 3 # **Course Objectives** - To Understand the basic object-oriented programming concepts and apply them in problem solving. - To Illustrate inheritance concepts for reusing the program. - To Demonstrate multitasking by using multiple threads and event handling - To Develop data-centric applications using JDBC. - To Understand the basics of java console and GUI based programming # **Course Outcomes** - Demonstrate the behavior of programs involving the basic programming constructs like control structures, constructors, string handling and garbage collection. - Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords - Use multithreading concepts to develop inter process communication. - Understand the process of graphical user interface design and implementation using AWT or swings. - Develop applets that interact abundantly with the client environment and deploy on the server. #### UNIT - I Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class. # **UNIT - II** Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io. # **UNIT - III** Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics. # **UNIT - IV** Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components-labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag. # **UNIT - V** Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables. #### **TEXT BOOKS:** - 1. Java the complete reference, 7th edition, Herbert schildt, TMH. - 2. Understanding OOP with Java, updated edition, T. Budd, Pearson education. - 1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley & sons - 2. An Introduction to OOP, third edition, T. Budd, Pearson education. - 3. Introduction to Java programming, Y. Daniel Liang, Pearson education. - 4. An introduction to Java programming and object-oriented application development, R.A. Johnson-Thomson. - 5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education. - 6. Core Java 2, Vol 2, Advanced Features, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education - 7. Object Oriented Programming with Java, R.Buyya, S.T.Selvi, X.Chu, TMH. - 8. Java and Object Orientation, an introduction, John Hunt, second edition, Springer. 9. Maurach's Beginning Java2 JDK 5, SPD. # **DATA STRUCTURES LAB** B.Tech. II Year I Sem. LTPC 0 0 3 1.5 **Prerequisites:** A Course on "Programming for problem solving". # **Course Objectives:** - It covers various concepts of C programming language - It introduces searching and sorting algorithms - It provides an understanding of data structures such as stacks and queues. # **Course Outcomes:** - Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists. - Ability to Implement searching and sorting algorithms # List o | of Exp | periments: | | | | | |--------|--|---------------|---------------|---------------|--| | 1. | Write a program that uses functions to perform the following operations on singly linked | | | | | | | list.: | | | | | | | i) Creation | ii) Insertion | iii) Deletion | iv) Traversal | | | 2. | Write a program that uses functions to perform the following operations on doubly linked | | | | | | | list.: | | | | | | | i) Creation | ii) Insertion | iii) Deletion | iv) Traversal | | | 3. | Write a program that uses functions to perform the following operations on circular linked | | | | | | | list.: | | | | | | | i) Creation | ii) Insertion | iii) Deletion | iv) Traversal | | | 4. | Write a program that implement stack (its operations) using | | | | | | | i) Arrays ii) Pointers | | | | | | 5. | Write a program that implement Queue (its operations) using | | | | | | | i) Arrays | ii) Poir | nters | | | - i) Arrays 6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order - i) Quick sort ii) Heap sort iii) Merge sort - Write a program to implement the tree traversal methods(Recursive and Non Recursive). 7. - Write a program to implement - i) Binary Search tree ii) B Trees iii) B+ Trees iv) **AVL** v) Red - Black trees trees - 9. Write a program to implement the graph traversal methods. - Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt # **TEXT BOOKS:** - 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press. - 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/Pearson Education. # **REFERENCE BOOK:** 1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning. # **OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB** B.Tech. II Year I Sem. L T P C 0 0 3 1.5 # **Course Objectives:** - To write programs using abstract classes. - To write programs for solving real world problems using the java collection framework. - To write multithreaded programs. - To write GUI programs using swing controls in Java. - To introduce java compiler and eclipse platform. - To impart hands-on experience with java programming. # **Course Outcomes:** - Able to write programs for solving real world problems using the java collection framework. - Able to write programs using abstract classes. - Able to write multithreaded programs. - Able to write GUI programs using swing controls in Java. #### Note: - 1. Use LINUX and MySQL for the Lab Experiments. Though not mandatory, encourage the use of the Eclipse platform. - 2. The list suggests the minimum program set. Hence, the concerned staff is requested to add more problems to the
list as needed. # **List of Experiments:** - 1. Use Eclipse or Net bean platform and acquaint yourself with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop. - 2. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero. - 3. A) Develop an applet in Java that displays a simple message. - B) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named "Compute" is clicked. - 4. Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num 2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box. - 5. Write a Java program that implements a multi-thread application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number. - 6. Write a Java program for the following: Create a doubly linked list of elements. Delete a given element from the above list. Display the contents of the list after deletion. - 7. Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "Stop" or "Ready" or "Go" should appear above the buttons in the selected color. Initially, there is no message shown. - 8. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape. - 9. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Labels in Grid Layout. - 10. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes). - 11. Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (\t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables). - 12. Write a Java program that correctly implements the producer consumer problem using the concept of inter thread communication. - 13. Write a Java program to list all the files in a directory including the files present in all its subdirectories. - 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education. - 2. Thinking in Java, Bruce Eckel, Pearson Education. - 3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning. - 4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson. #### DATA VISUALIZATION - R PROGRAMMING/ POWER BI #### B.Tech. II Year I Sem. L T P C 0 0 2 1 # **Course Objectives:** - Effective use of Business Intelligence (BI) technology (Tableau) to apply data visualization - To discern patterns and relationships in the data. - To build Dashboard applications. - To communicate the results clearly and concisely. - To be able to work with different formats of data sets. # Course Outcomes: At the end of the course a student should be able to - Understand How to import data into Tableau. - Understand Tableau concepts of Dimensions and Measures. - Develop Programs and understand how to map Visual Layouts and Graphical Properties. - Create a Dashboard that links multiple visualizations. - Use graphical user interfaces to create Frames for providing solutions to real world problems. #### **Lab Problems:** - 1. Understanding Data, What is data, where to find data, Foundations for building Data Visualizations, Creating Your First visualization? - 2. Getting started with Tableau Software using Data file formats, connecting your Data to Tableau, creating basic charts (line, bar charts, Tree maps), Using the Show me panel. - 3. Tableau Calculations, Overview of SUM, AVR, and Aggregate features, Creating custom calculations and fields. - 4. Applying new data calculations to your visualizations, Formatting Visualizations, Formatting Tools and Menus, Formatting specific parts of the view. - 5. Editing and Formatting Axes, Manipulating Data in Tableau data, Pivoting Tableau data. - 6. Structuring your data, Sorting and filtering Tableau data, Pivoting Tableau data. - 7. Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colors. - 8. Creating Dashboards & Dashboards & Dashboard, Creating your first dashboard and Story, Design for different displays, adding interactivity to your Dashboard, Distributing & Distributi - 9. Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and Exporting. - 10. Creating custom charts, cyclical data and circular area charts, Dual Axis charts. - 1. Microsoft Power BI cookbook, Brett Powell, 2nd edition. - 2. R Programming for Data Science by Roger D. Peng (References) - 3. The Art of R Programming by Norman Matloff Cengage Learning India. # **GENDER SENSITIZATION LAB** B.Tech. II Year I Sem. L T P C 0 0 2 0 # **COURSE DESCRIPTION** This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines — such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies — to examine cultural assumptions about sex, gender, and sexuality. This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development. # **Objectives of the Course** - To develop students' sensibility with regard to issues of gender in contemporary India. - To provide a critical perspective on the socialization of men and women. - To introduce students to information about some key biological aspects of genders. - To expose the students to debates on the politics and economics of work. - To help students reflect critically on gender violence. - To expose students to more egalitarian interactions between men and women. # **Learning Outcomes** - > Students will have developed a better understanding of important issues related to gender in contemporary India. - > Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film. - > Students will attain a finer grasp of how gender discrimination works in our society and how to counter it. - > Students will acquire insight into the gendered division of labor and its relation to politics and economics. - Men and women students and professionals will be better equipped to work and live together as equals. - > Students will develop a sense of appreciation of women in all walks of life. - > Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence. # **Unit-I: UNDERSTANDING GENDER** Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men - Preparing for Womanhood. Growing up Male. First lessons in Caste. # **Unit – II: GENDER ROLES AND RELATIONS** Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary # Unit - III: GENDER AND LABOUR Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work. -Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming
Unit - IV: GENDER - BASED VIOLENCE The Concept of Violence-Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "Chupulu". Domestic Violence: Speaking Outls Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...." # **Unit - V: GENDER AND CULTURE** Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-The Brave Heart. <u>Note</u>: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments. - Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender". - ▽ ESSENTIAL READING: The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A.Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015. #### ASSESSMENT AND GRADING: • Discussion & Classroom Participation: 20% Project/Assignment: 30% • End Term Exam: 50% # **DISCRETE MATHEMATICS** B.Tech. II Year II Sem. L T P C 3 0 0 3 # **Course Objectives:** - Introduces elementary discrete mathematics for computer science and engineering. - Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions. #### **Course Outcomes:** - Understand and construct precise mathematical proofs - Apply logic and set theory to formulate precise statements - Analyze and solve counting problems on finite and discrete structures - Describe and manipulate sequences - Apply graph theory in solving computing problems #### UNIT - I **Mathematical logic:** Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus. ### **UNIT - II** **Set theory:** Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions. # **UNIT - III** **Algebraic Structures:** Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra. #### **UNIT - IV** **Elementary Combinatorics:** Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion. #### **UNIT - V** **Graph Theory:** Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multi-graphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem. #### **TEXT BOOKS:** - 1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed. - 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe I. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India, 2nd ed. - 1. Discrete and Combinatorial Mathematics an applied introduction: Ralph.P. Grimald, Pearson education, 5th edition. - 2. Discrete Mathematical Structures: Thomas Kosy, Tata McGraw Hill publishing co. # **BUSINESS ECONOMICS AND FINANCIAL ANALYSIS** B.Tech. II Year II Sem. L T P C 3 0 0 3 **Course Objective:** To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective. **Course Outcome:** The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company. #### Unit - I: Introduction to Business and Economics **Business**: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance. **Economics:** Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics. # **UNIT - II: Demand and Supply Analysis** **Elasticity of Demand:** Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting. Supply Analysis: Determinants of Supply, Supply Function and Law of Supply. # UNIT - III: Production, Cost, Market Structures & Pricing **Production Analysis:** Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions. **Cost analysis**: Types of Costs, Short run and Long run Cost Functions. **Market Structures**: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition. **Pricing:** Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis. **UNIT - IV: Financial Accounting:** Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts (Simple Problems). **UNIT - V: Financial Ratios Analysis:** Concept of Ratio Analysis, Importance and Types of Ratios, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems). # **TEXT BOOKS:** - 1. D. D. Chaturvedi, S. L. Gupta, Business Economics Theory and Applications, International Book House Pvt. Ltd. 2013. - 2. Dhanesh K Khatri, Financial Accounting, Tata Mc -Graw Hill, 2011. - 3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata Mc Graw Hill Education Pvt. Ltd. 2012. # **REFERENCE BOOKS:** - 1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015. - 2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013. Principal PRINCETON INSTITUTE OF ENGINEERING 8 TECHNOLOGY FOR WOMEN Chowdaryguda, Korremula (V) Charlesar (M), Medchal Dirt. T.S.50008/ # **OPERATING SYSTEMS** # B.Tech. II Year II Sem. L T P C 3 0 0 3 # **Prerequisites:** - 1. A course on "Computer Programming and Data Structures". - 2. A course on "Computer Organization and Architecture". # **Course Objectives:** - Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection) - Introduce the issues to be considered in the design and development of operating system - Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix #### **Course Outcomes:** - Will be able to control access to a computer and the files that may be shared - Demonstrate the knowledge of the components of computers and their respective roles in computing. - Ability to recognize and resolve user problems with standard operating environments. - Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively. #### UNIT - I **Operating System - Introduction**, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls **Process -** Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads #### **UNIT - II** **CPU Scheduling** - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec **Deadlocks** - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock #### **UNIT - III** **Process Management and Synchronization** - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors **Interprocess Communication Mechanisms:** IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory. # **UNIT - IV** **Memory Management and Virtual Memory** - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms. # **UNIT - V**
File System Interface and Operations -Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, Iseek, stat, ioctl system calls. # **TEXT BOOKS:** - 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley. - 2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education. - 1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI - 2. Operating System A Design Approach- Crowley, TMH. - 3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI - 4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education - 5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education. #### **DATABASE MANAGEMENT SYSTEMS** B.Tech. II Year II Sem. L T P C 3 0 0 3 Prerequisites: A course on "Data Structures". # **Course Objectives:** - To understand the basic concepts and the applications of database systems. - To master the basics of SQL and construct queries using SQL. - Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques. #### **Course Outcomes:** - Gain knowledge of fundamentals of DBMS, database design and normal forms - Master the basics of SQL for retrieval and management of data. - Be acquainted with the basics of transaction processing and concurrency control. - Familiarity with database storage structures and access techniques # UNIT - I **Database System Applications**: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS **Introduction to Database Design:** Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model #### **UNIT - II** **Introduction to the Relational Model:** Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views. Relational Algebra, Tuple relational Calculus, Domain relational calculus. #### **UNIT - III** **SQL:** QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases. **Schema Refinement:** Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form. #### **UNIT - IV** Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions. # UNIT - V Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure. # **TEXT BOOKS:** - 1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition - 2. Database Management Systems, Raghurama Krishran, Johannes Gehrke, Tata Mc Graw Hill - 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition. - 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education - 3. Introduction to Database Systems, C. J. Date, Pearson Education - 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD. - 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI. - 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition. #### **SOFTWARE ENGINEERING** # B.Tech. II Year II Sem. # **Course Objectives** - The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects. - Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams # **Course Outcomes** - Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD). - Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices. - Will have experience and/or awareness of testing problems and will be able to develop a simple testing report # UNIT - I **Introduction to Software Engineering**: The evolving role of software, changing nature of software, software myths. **A Generic view of process**: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). **Process models**: The waterfall model, Spiral model and Agile methodology #### **UNIT - II** **Software Requirements:** Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document. **Requirements engineering process**: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management. #### **UNIT - III** **Design Engineering**: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams. #### **UNIT - IV** **Testing Strategies:** A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. Metrics for Process and Products: Software measurement, metrics for software quality. #### **UNIT - V** **Risk management:** Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards. # **TEXT BOOKS:** - 1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition. - 2. Software Engineering- Sommerville, 7th edition, Pearson Education. - 1. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education. - 2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley. - 3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies. - 4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education. # **OPERATING SYSTEMS LAB** B.Tech. II Year II Sem. L T P C 0 0 2 1 **Prerequisites:** A course on "Programming for Problem Solving", A course on "Computer Organization and Architecture". Co-requisite: A course on "Operating Systems". # **Course Objectives:** - To provide an understanding of the design aspects of operating system concepts through simulation - Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix #### **Course Outcomes:** - Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management. - Able to implement C programs using Unix system calls # **List of Experiments:** - 1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b) SJF c) Round Robin d) priority - 2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir) - 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention. - 4. Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls. - 5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Queues d) Shared Memory - 6. Write C programs to simulate the following memory management techniques a) Paging b) Segmentation - 7. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal # **TEXT BOOKS:** - 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley - 2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education. - 1. Operating Systems Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI - 2. Operating System A Design Approach-Crowley, TMH. - 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI - 4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education - 5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education #### DATABASE MANAGEMENT SYSTEMS LAB B.Tech. II Year II Sem. L T P C 0 0 2 1 Co-requisites: "Database Management Systems" # **Course Objectives:** - Introduce ER data model, database design and normalization - Learn SQL basics for data definition and data manipulation ### **Course Outcomes:** - Design database schema for a given application and
apply normalization - Acquire skills in using SQL commands for data definition and data manipulation. - Develop solutions for database applications using procedures, cursors and triggers # **List of Experiments:** - 1. Concept design with E-R Model - 2. Relational Model - 3. Normalization - 4. Practicing DDL commands - 5. Practicing DML commands - 6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.) - B. Nested, Correlated subqueries - 7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views. - 8. Triggers (Creation of insert trigger, delete trigger, update trigger) - 9. Procedures - 10. Usage of Cursors # **TEXT BOOKS:** - 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3rd Edition - 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition. - 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th - 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education - 3. Introduction to Database Systems, C.J. Date, Pearson Education - 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD. - 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI. - 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition. # **NODE JS/ REACT JS/ DJANGO** B.Tech. II Year II Sem. L T P C 0 0 2 1 **Prerequisites:** Object Oriented Programming through Java, HTML Basics **Course Objectives:** - To implement the static web pages using HTML and do client side validation using JavaScript. - To design and work with databases using Java - To develop an end to end application using java full stack. - To introduce Node JS implementation for server side programming. - To experiment with single page application development using React. Course Outcomes: At the end of the course, the student will be able to, - Build a custom website with HTML, CSS, and Bootstrap and little JavaScript. - Demonstrate Advanced features of JavaScript and learn about JDBC - Develop Server side implementation using Java technologies like - Develop the server side implementation using Node JS. - Design a Single Page Application using React. # **Exercises:** - 1. Build a responsive web application for shopping cart with registration, login, catalog and cart pages using CSS3 features, flex and grid. - 2. Make the above web application responsive web application using Bootstrap framework. - 3. Use JavaScript for doing client side validation of the pages implemented in experiment 1 and experiment 2. - 4. Explore the features of ES6 like arrow functions, callbacks, promises, async/await. Implement an application for reading the weather information from openweathermap.org and display the information in the form of a graph on the web page. - 5. Develop a java stand alone application that connects with the database (Oracle / mySql) and perform the CRUD operation on the database tables. - 6. Create an xml for the bookstore. Validate the same using both DTD and XSD. - 7. Design a controller with servlet that provides the interaction with application developed in experiment 1 and the database created in experiment 5. - 8. Maintaining the transactional history of any user is very important. Explore the various session tracking mechanism (Cookies, HTTP Session) - 9. Create a custom server using http module and explore the other modules of Node JS like OS, path, event. - 10. Develop an express web application that can interact with REST API to perform CRUD operations on student data. (Use Postman) - 11. For the above application create authorized end points using JWT (JSON Web Token). - 12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages. - 13. Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.js - 14. Create a TODO application in react with necessary components and deploy it into github. - 1. Jon Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wrox Publications, 2010 - 2. Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2nd Edition, 2008. - 3. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press. # **CONSTITUTION OF INDIA** B.Tech. II Year II Sem. L T P C 3 0 0 0 # Course Objectives: Students will be able to: - Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective. - To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism. - To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution. # Course Outcomes: Students will be able to: - Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics. - Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India. - Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution - Discuss the passage of the Hindu Code Bill of 1956. - Unit 1 History of Making of the Indian Constitution- History of Drafting Committee. - Unit 2 Philosophy of the Indian Constitution- Preamble Salient Features - Unit 3 Contours of Constitutional Rights & Duties Fundamental Rights - Right to Equality - Right to Freedom - Right against Exploitation - Right to Freedom of Religion - Cultural and Educational Rights - Right to Constitutional Remedies - Directive Principles of State Policy - Fundamental Duties. **Unit - 4** Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions **Unit - 5** Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy **Unit - 6** Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women. # Suggested Reading: - 1. The Constitution of India, 1950 (Bare Act), Government Publication. - 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015. - 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014. - 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.